{"title":"An improved method for nonstationary signals components extraction based on the ICI rule","authors":"J. Lerga, V. Sucic, B. Boashash","doi":"10.1109/WOSSPA.2011.5931497","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved adaptive algorithm for components localization and extraction from a noisy multicompo-nent signal time-frequency distribution (TFD). The algorithm, based on the intersection of confidence intervals (ICI) rule, does not require any a priori knowledge of signal components and their mixture. Its efficiency is significantly enhanced by using high resolution and reduced cross-terms TFDs. The obtained results are compared for different signal-to-noise ratios (SNRs) and various time and lag window types used in the modified B-distribution (MBD) calculation, proving the method to be a valuable tool in noisy multicomponent signals components extraction in the time-frequency (TF) domain.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper proposes an improved adaptive algorithm for components localization and extraction from a noisy multicompo-nent signal time-frequency distribution (TFD). The algorithm, based on the intersection of confidence intervals (ICI) rule, does not require any a priori knowledge of signal components and their mixture. Its efficiency is significantly enhanced by using high resolution and reduced cross-terms TFDs. The obtained results are compared for different signal-to-noise ratios (SNRs) and various time and lag window types used in the modified B-distribution (MBD) calculation, proving the method to be a valuable tool in noisy multicomponent signals components extraction in the time-frequency (TF) domain.