A. Shahsavari, M. Farajollahi, E. Stewart, A. V. Meier, L. Alvarez, Ed Cortez, Hamed Mohsenian Rad
{"title":"A data-driven analysis of capacitor bank operation at a distribution feeder using micro-PMU data","authors":"A. Shahsavari, M. Farajollahi, E. Stewart, A. V. Meier, L. Alvarez, Ed Cortez, Hamed Mohsenian Rad","doi":"10.1109/ISGT.2017.8085984","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct a data-driven experimental analysis on capacitor bank switching event at a distribution grid in Riverside, CA using data from two distribution level phasor measurement units, a.k.a, μPMUs. Of particular interest was to detect the capacitor bank switching events based on feeder-level and load-level μPMUs and thus eliminating the need to install separate sensors for the switched capacitor banks. In addition, the operational parameters of capacitor bank is investigated. Moreover, the dynamic effects of capacitor bank switching events is also considered through voltage and current synchrophasor data. This paper takes a first step in using μPMU data to conducting a detailed analysis of how different voltage-levels are affected by capacitor bank switching events in distribution systems.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8085984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
In this paper, we conduct a data-driven experimental analysis on capacitor bank switching event at a distribution grid in Riverside, CA using data from two distribution level phasor measurement units, a.k.a, μPMUs. Of particular interest was to detect the capacitor bank switching events based on feeder-level and load-level μPMUs and thus eliminating the need to install separate sensors for the switched capacitor banks. In addition, the operational parameters of capacitor bank is investigated. Moreover, the dynamic effects of capacitor bank switching events is also considered through voltage and current synchrophasor data. This paper takes a first step in using μPMU data to conducting a detailed analysis of how different voltage-levels are affected by capacitor bank switching events in distribution systems.