{"title":"Robust data retrieval from high-security structural colour QR codes via histogram equalization and decorrelation stretching","authors":"Mahssa Abdolahi, Hao Jiang, B. Kaminska","doi":"10.1109/UEMCON47517.2019.8993032","DOIUrl":null,"url":null,"abstract":"In this work, robust readout of the data (232 English characters) stored in high-security structural colour QR codes, was achieved by using multiple image processing techniques, specifically, histogram equalization and decorrelation stretching. The decoded structural colour QR codes are generic diffractive RGB-pixelated periodic nanocones selectively activated by laser exposure to obtain the particular design of interest. The samples were imaged according to the criteria determined by the diffraction grating equation for the lighting and viewing angles given the red, green, and blue periodicities of the grating. However, illumination variations all through the samples, cross-module and cross-channel interference effects result in acquiring images with dissimilar lighting conditions which cannot be directly retrieved by the decoding script and need significant preprocessing. According to the intensity plots, even if the intensity values are very close (above ~200) at some typical regions of the images with different lighting conditions, their inconsistencies (below ~100) at the pixels of one representative region may lead to the requirement for using different methods for recovering the data from all red, green, and blue channels. In many cases, a successful data readout could be achieved by downscaling the images to ~300-pixel dimensions (along with bilinear interpolation resampling), histogram equalization (HE), linear spatial low-pass mean filtering, and gamma function, each used either independently or with other complementary processes. The majority of images, however, could be fully decoded using decorrelation stretching (DS) either as a standalone or combinational process for obtaining a more distinctive colour definition.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, robust readout of the data (232 English characters) stored in high-security structural colour QR codes, was achieved by using multiple image processing techniques, specifically, histogram equalization and decorrelation stretching. The decoded structural colour QR codes are generic diffractive RGB-pixelated periodic nanocones selectively activated by laser exposure to obtain the particular design of interest. The samples were imaged according to the criteria determined by the diffraction grating equation for the lighting and viewing angles given the red, green, and blue periodicities of the grating. However, illumination variations all through the samples, cross-module and cross-channel interference effects result in acquiring images with dissimilar lighting conditions which cannot be directly retrieved by the decoding script and need significant preprocessing. According to the intensity plots, even if the intensity values are very close (above ~200) at some typical regions of the images with different lighting conditions, their inconsistencies (below ~100) at the pixels of one representative region may lead to the requirement for using different methods for recovering the data from all red, green, and blue channels. In many cases, a successful data readout could be achieved by downscaling the images to ~300-pixel dimensions (along with bilinear interpolation resampling), histogram equalization (HE), linear spatial low-pass mean filtering, and gamma function, each used either independently or with other complementary processes. The majority of images, however, could be fully decoded using decorrelation stretching (DS) either as a standalone or combinational process for obtaining a more distinctive colour definition.