{"title":"A Review on Design and Analysis of Industrial Ball Valve Using Computational Fluid Dynamics","authors":"Mr. Harshal Rajesh Dorsatwar, D. P. Kadu","doi":"10.46335/ijies.2023.8.2.6","DOIUrl":null,"url":null,"abstract":"– Computational Fluid Dynamic analysis is carried out to establish a robust affiliation between the design variables of material design domain and product design domain. The CFD analyses performed for both ball valve and gate valve is necessitated with input parameters that outfits the application such as pressure, density, viscosity and temperature. The maximum pressure acting over diverse regions of the valve system that crop up due to fluid flow was examined by the extension of pressure concentration for different fluids viz. water, lubricant and diesel. The analysis is presumed to be conversant with material selection strategies that satisfy the criterions for the new product development and therefore well defined inputs inclusive of virtual solid model, boundary conditions are promoted with higher grade mesh resolutions. In these cases, approximate selections are exercised and numerical scheme of properties has been adhered to embrace perfection in simulation analysis. The CFD study exemplifies accurate regions wherein maximum pressure assaults the valve body and so the observations originate to ascend product development without the expense of physical testing .Furthermore valve deformation and valve performance is obligatory for material and product design integration and hence customary predictions is done by coupling the CFD results with finite element analysis .","PeriodicalId":286065,"journal":{"name":"International Journal of Innovations in Engineering and Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovations in Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46335/ijies.2023.8.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
– Computational Fluid Dynamic analysis is carried out to establish a robust affiliation between the design variables of material design domain and product design domain. The CFD analyses performed for both ball valve and gate valve is necessitated with input parameters that outfits the application such as pressure, density, viscosity and temperature. The maximum pressure acting over diverse regions of the valve system that crop up due to fluid flow was examined by the extension of pressure concentration for different fluids viz. water, lubricant and diesel. The analysis is presumed to be conversant with material selection strategies that satisfy the criterions for the new product development and therefore well defined inputs inclusive of virtual solid model, boundary conditions are promoted with higher grade mesh resolutions. In these cases, approximate selections are exercised and numerical scheme of properties has been adhered to embrace perfection in simulation analysis. The CFD study exemplifies accurate regions wherein maximum pressure assaults the valve body and so the observations originate to ascend product development without the expense of physical testing .Furthermore valve deformation and valve performance is obligatory for material and product design integration and hence customary predictions is done by coupling the CFD results with finite element analysis .