Extending OpenACC for Efficient Stencil Code Generation and Execution by Skeleton Frameworks

Alyson D. Pereira, M. Castro, M. Dantas, Rodrigo C. O. Rocha, L. F. Góes
{"title":"Extending OpenACC for Efficient Stencil Code Generation and Execution by Skeleton Frameworks","authors":"Alyson D. Pereira, M. Castro, M. Dantas, Rodrigo C. O. Rocha, L. F. Góes","doi":"10.1109/HPCS.2017.110","DOIUrl":null,"url":null,"abstract":"The OpenACC programming model simplifies the programming for accelerator devices such as GPUs. Its abstract accelerator model defines a least common denominator for accelerator devices, thus it cannot represent architectural specifics of these devices without losing portability. Therefore, this general- purpose approach delivers good performance on average, but it misses optimization opportunities for code generation and execution of specific classes of applications. In this paper, we propose OpenACC extensions to enable efficient code generation and execution of stencil applications by parallel skeleton frameworks such as PSkel. Our results show that our stencil extensions may improve the performance of OpenACC in up to 28% and 45% on GPU and CPU, respectively. Moreover, we show that the work-partitioning mechanism offered by the skeleton framework, which splits the computation across CPU and GPU, may improve even further the performance of the applications in up to 18%.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The OpenACC programming model simplifies the programming for accelerator devices such as GPUs. Its abstract accelerator model defines a least common denominator for accelerator devices, thus it cannot represent architectural specifics of these devices without losing portability. Therefore, this general- purpose approach delivers good performance on average, but it misses optimization opportunities for code generation and execution of specific classes of applications. In this paper, we propose OpenACC extensions to enable efficient code generation and execution of stencil applications by parallel skeleton frameworks such as PSkel. Our results show that our stencil extensions may improve the performance of OpenACC in up to 28% and 45% on GPU and CPU, respectively. Moreover, we show that the work-partitioning mechanism offered by the skeleton framework, which splits the computation across CPU and GPU, may improve even further the performance of the applications in up to 18%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过骨架框架扩展OpenACC以实现高效的模板代码生成和执行
OpenACC编程模型简化了gpu等加速器设备的编程。它的抽象加速器模型定义了加速器设备的最小公分母,因此它不能在不失去可移植性的情况下表示这些设备的架构细节。因此,这种通用方法平均而言提供了良好的性能,但它错过了代码生成和特定应用程序类执行的优化机会。在本文中,我们提出了OpenACC扩展,以便通过并行骨架框架(如PSkel)实现高效的代码生成和模板应用程序的执行。我们的结果表明,我们的模板扩展可以使OpenACC在GPU和CPU上的性能分别提高28%和45%。此外,我们展示了骨架框架提供的工作分区机制,它将计算分散在CPU和GPU上,可以进一步提高应用程序的性能,最高可达18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Particle-Based Rendering Framework for Large Data Visualization on HPC Environments Practical Implementation of Lattice-Based Program Obfuscators for Point Functions Adaptive Root Cause Analysis for Self-Healing in 5G Networks Power Aware High Performance Computing: Challenges and Opportunities for Application and System Developers — Survey & Tutorial ICARO-PAPM: Congestion Management with Selective Queue Power-Gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1