3D model retrieval based on deep Autoencoder neural networks

Zhaowei Liu, Yung-Yao Chen, S. Hidayati, S. Chien, Feng-Chia Chang, K. Hua
{"title":"3D model retrieval based on deep Autoencoder neural networks","authors":"Zhaowei Liu, Yung-Yao Chen, S. Hidayati, S. Chien, Feng-Chia Chang, K. Hua","doi":"10.1109/ICSIGSYS.2017.7967059","DOIUrl":null,"url":null,"abstract":"The rapid growth of 3D model resources for 3D printing has created an urgent need for 3D model retrieval systems. Benefiting from the evolution of hardware devices, visualized 3D models can be easily rendered using a tablet computer or handheld mobile device. In this paper, we present a novel 3D model retrieval method involving view-based features and deep learning. Because 2D images are highly distinguishable, constructing a 3D model from multiple 2D views is one of the most common methods of 3D model retrieval. Normalization is typically challenging and time-consuming for view-based retrieval methods; however, this work utilized an unsupervised deep learning technique, called Autoencoder, to refine compact view-based features. Therefore, the proposed method is rotation-invariant, requiring only the normalization of the translation and the scale of the 3D models in the dataset. For robustness, we applied Fourier descriptors and Zernike moments to represent the 2D features. The experimental results testing our method on the online Princeton Shape Benchmark Dataset demonstrate more accurate retrieval performance than other existing methods.","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The rapid growth of 3D model resources for 3D printing has created an urgent need for 3D model retrieval systems. Benefiting from the evolution of hardware devices, visualized 3D models can be easily rendered using a tablet computer or handheld mobile device. In this paper, we present a novel 3D model retrieval method involving view-based features and deep learning. Because 2D images are highly distinguishable, constructing a 3D model from multiple 2D views is one of the most common methods of 3D model retrieval. Normalization is typically challenging and time-consuming for view-based retrieval methods; however, this work utilized an unsupervised deep learning technique, called Autoencoder, to refine compact view-based features. Therefore, the proposed method is rotation-invariant, requiring only the normalization of the translation and the scale of the 3D models in the dataset. For robustness, we applied Fourier descriptors and Zernike moments to represent the 2D features. The experimental results testing our method on the online Princeton Shape Benchmark Dataset demonstrate more accurate retrieval performance than other existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度自编码器神经网络的三维模型检索
随着3D打印3D模型资源的快速增长,对3D模型检索系统产生了迫切的需求。得益于硬件设备的发展,可视化3D模型可以通过平板电脑或手持移动设备轻松呈现。本文提出了一种基于视图特征和深度学习的三维模型检索方法。由于二维图像具有高度可区分性,因此从多个二维视图构建三维模型是三维模型检索最常用的方法之一。对于基于视图的检索方法来说,标准化通常是具有挑战性和耗时的;然而,这项工作利用了一种称为Autoencoder的无监督深度学习技术来改进紧凑的基于视图的特征。因此,该方法具有旋转不变性,只需要对数据集中三维模型的平移和尺度进行归一化。为了鲁棒性,我们应用傅里叶描述子和泽尼克矩来表示二维特征。在在线普林斯顿形状基准数据集上的实验结果表明,该方法的检索性能比其他现有方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect) The development of IoT LoRa: A performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency On the design of LDPC-based Raptor codes for single carrier Internet of Things (SC-IoT) Benchmark data set for glaucoma detection with annotated cup to disc ratio Design of LDGM-based Raptor Codes for broadband Internet of Things using EXIT chart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1