Visualisation of Heterogeneous Data with the Generalised Generative Topographic Mapping

Michel F. Randrianandrasana, Shahzad Mumtaz, I. Nabney
{"title":"Visualisation of Heterogeneous Data with the Generalised Generative Topographic Mapping","authors":"Michel F. Randrianandrasana, Shahzad Mumtaz, I. Nabney","doi":"10.5220/0005305002330238","DOIUrl":null,"url":null,"abstract":"Heterogeneous and incomplete datasets are common in many real-world visualisation applications. The probabilistic nature of the Generative Topographic Mapping (GTM), which was originally developed for complete continuous data, can be extended to model heterogeneous (i.e. containing both continuous and discrete values) and missing data. This paper describes and assesses the resulting model on both synthetic and real-world heterogeneous data with missing values.","PeriodicalId":326087,"journal":{"name":"International Conference on Information Visualization Theory and Applications","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Visualization Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005305002330238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heterogeneous and incomplete datasets are common in many real-world visualisation applications. The probabilistic nature of the Generative Topographic Mapping (GTM), which was originally developed for complete continuous data, can be extended to model heterogeneous (i.e. containing both continuous and discrete values) and missing data. This paper describes and assesses the resulting model on both synthetic and real-world heterogeneous data with missing values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义生成地形映射的异构数据可视化
异构和不完整的数据集在许多现实世界的可视化应用中很常见。生成式地形映射(GTM)的概率性质,最初是为完整的连续数据开发的,可以扩展到建模异构(即包含连续和离散值)和缺失数据。本文描述并评估了合成和真实异构数据缺失值的结果模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages Information Visualization for CSV Open Data Files Structure Analysis VISUAL ANALYTICS OF MULTIMODAL BIOLOGICAL DATA Arc and Swarm-based Representations of Customer's Flows among Supermarkets Effect of Displaying Uncertainty in Line and Bar Charts - Presentation and Interpretation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1