A Multifaceted Approach to Bitcoin Fraud Detection: Global and Local Outliers

Patrick M. Monamo, Vukosi Marivate, Bhesipho Twala
{"title":"A Multifaceted Approach to Bitcoin Fraud Detection: Global and Local Outliers","authors":"Patrick M. Monamo, Vukosi Marivate, Bhesipho Twala","doi":"10.1109/ICMLA.2016.0039","DOIUrl":null,"url":null,"abstract":"In the Bitcoin network, lack of class labels tend to cause obscurities in anomalous financial behaviour interpretation. To understand fraud in the latest development of the financial sector, a multifaceted approach is proposed. In this paper, Bitcoin fraud is described from both global and local perspectives using trimmed k-means and kd-trees. The two spheres are investigated further through random forests, maximum likelihood-based and boosted binary regression models. Although both angles show good performance, global outlier perspective outperforms the local viewpoint with exception of random forest that exhibits nearby perfect results from both dimensions. This signifies that features extracted for this study describe the network fairly.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

In the Bitcoin network, lack of class labels tend to cause obscurities in anomalous financial behaviour interpretation. To understand fraud in the latest development of the financial sector, a multifaceted approach is proposed. In this paper, Bitcoin fraud is described from both global and local perspectives using trimmed k-means and kd-trees. The two spheres are investigated further through random forests, maximum likelihood-based and boosted binary regression models. Although both angles show good performance, global outlier perspective outperforms the local viewpoint with exception of random forest that exhibits nearby perfect results from both dimensions. This signifies that features extracted for this study describe the network fairly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比特币欺诈检测的多方面方法:全球和本地异常值
在比特币网络中,缺乏类别标签往往会导致异常金融行为解释的模糊性。为了了解欺诈在金融部门的最新发展,提出了一个多方面的方法。在本文中,使用修剪的k-means和kd-tree从全局和局部角度描述了比特币欺诈。通过随机森林、基于最大似然和增强的二元回归模型进一步研究了这两个领域。尽管这两个角度都表现出良好的性能,但除了随机森林在两个维度上都表现出近乎完美的结果外,全局离群点视角的表现优于局部视角。这表明本研究提取的特征能够很好地描述网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1