Joint Latent Dirichlet Allocation for non-iid social tags

Jiangchao Yao, Ya Zhang, Zhe Xu, Jun-wei Sun, Jun Zhou, Xiao Gu
{"title":"Joint Latent Dirichlet Allocation for non-iid social tags","authors":"Jiangchao Yao, Ya Zhang, Zhe Xu, Jun-wei Sun, Jun Zhou, Xiao Gu","doi":"10.1109/ICME.2015.7177490","DOIUrl":null,"url":null,"abstract":"Topic models have been widely used for analyzing text corpora and achieved great success in applications including content organization and information retrieval. However, different from traditional text data, social tags in the web containers are usually of small amounts, unordered, and non-iid, i.e., it is highly dependent on contextual information such as users and objects. Considering the specific characteristics of social tags, we here introduce a new model named Joint Latent Dirichlet Allocation (JLDA) to capture the relationships among users, objects, and tags. The model assumes that the latent topics of users and those of objects jointly influence the generation of tags. The latent distributions is then inferred with Gibbs sampling. Experiments on two social tag data sets have demonstrated that the model achieves a lower predictive error and generates more reasonable topics. We also present an interesting application of this model to object recommendation.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topic models have been widely used for analyzing text corpora and achieved great success in applications including content organization and information retrieval. However, different from traditional text data, social tags in the web containers are usually of small amounts, unordered, and non-iid, i.e., it is highly dependent on contextual information such as users and objects. Considering the specific characteristics of social tags, we here introduce a new model named Joint Latent Dirichlet Allocation (JLDA) to capture the relationships among users, objects, and tags. The model assumes that the latent topics of users and those of objects jointly influence the generation of tags. The latent distributions is then inferred with Gibbs sampling. Experiments on two social tag data sets have demonstrated that the model achieves a lower predictive error and generates more reasonable topics. We also present an interesting application of this model to object recommendation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非id社会标签的联合潜狄利克雷分配
主题模型在文本语料库分析中得到了广泛的应用,在内容组织和信息检索等方面取得了巨大的成功。然而,与传统的文本数据不同,web容器中的社交标签通常是少量的、无序的、非id的,也就是说,它高度依赖于用户和对象等上下文信息。考虑到社交标签的特点,本文引入了一种新的模型JLDA (Joint Latent Dirichlet Allocation)来捕获用户、对象和标签之间的关系。该模型假设用户的潜在主题和对象的潜在主题共同影响标签的生成。然后用吉布斯抽样推断潜在分布。在两个社会标签数据集上的实验表明,该模型实现了较低的预测误差,生成了更合理的主题。我们还提出了该模型在对象推荐中的一个有趣的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1