Heterogeneous Fault Prediction Using Feature Selection and Supervised Learning Algorithms

R. Arora, Arvinder Kaur
{"title":"Heterogeneous Fault Prediction Using Feature Selection and Supervised Learning Algorithms","authors":"R. Arora, Arvinder Kaur","doi":"10.1142/s2196888822500142","DOIUrl":null,"url":null,"abstract":"Software Fault Prediction (SFP) is the most persuasive research area of software engineering. Software Fault Prediction which is carried out within the same software project is known as With-In Fault Prediction. However, local data repositories are not enough to build the model of With-in software Fault prediction. The idea of cross-project fault prediction (CPFP) has been suggested in recent years, which aims to construct a prediction model on one project, and use that model to predict the other project. However, CPFP requires that both the training and testing datasets use the same set of metrics. As a consequence, traditional CPFP approaches are challenging to implement through projects with diverse metric sets. The specific case of CPFP is Heterogeneous Fault Prediction (HFP), which allows the program to predict faults among projects with diverse metrics. The proposed framework aims to achieve an HFP model by implementing Feature Selection on both the source and target datasets to build an efficient prediction model using supervised machine learning techniques. Our approach is applied on two open-source projects, Linux and MySQL, and prediction is evaluated based on Area Under Curve (AUC) performance measure. The key results of the proposed approach are as follows: It significantly gives better results of prediction performance for heterogeneous projects as compared with cross projects. Also, it demonstrates that feature selection with feature mapping has a significant effect on HFP models. Non-parametric statistical analyses, such as the Friedman and Nemenyi Post-hoc Tests, are applied, demonstrating that Logistic Regression performed significantly better than other supervised learning algorithms in HFP models.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888822500142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software Fault Prediction (SFP) is the most persuasive research area of software engineering. Software Fault Prediction which is carried out within the same software project is known as With-In Fault Prediction. However, local data repositories are not enough to build the model of With-in software Fault prediction. The idea of cross-project fault prediction (CPFP) has been suggested in recent years, which aims to construct a prediction model on one project, and use that model to predict the other project. However, CPFP requires that both the training and testing datasets use the same set of metrics. As a consequence, traditional CPFP approaches are challenging to implement through projects with diverse metric sets. The specific case of CPFP is Heterogeneous Fault Prediction (HFP), which allows the program to predict faults among projects with diverse metrics. The proposed framework aims to achieve an HFP model by implementing Feature Selection on both the source and target datasets to build an efficient prediction model using supervised machine learning techniques. Our approach is applied on two open-source projects, Linux and MySQL, and prediction is evaluated based on Area Under Curve (AUC) performance measure. The key results of the proposed approach are as follows: It significantly gives better results of prediction performance for heterogeneous projects as compared with cross projects. Also, it demonstrates that feature selection with feature mapping has a significant effect on HFP models. Non-parametric statistical analyses, such as the Friedman and Nemenyi Post-hoc Tests, are applied, demonstrating that Logistic Regression performed significantly better than other supervised learning algorithms in HFP models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征选择和监督学习算法的异构故障预测
软件故障预测(SFP)是软件工程中最有说服力的研究领域。在同一软件项目中进行的软件故障预测称为内故障预测。然而,本地数据存储库不足以构建软件内故障预测模型。近年来提出了跨项目断层预测的思想,其目的是在一个项目上建立预测模型,并用该模型预测另一个项目。然而,CPFP要求训练和测试数据集使用相同的指标集。因此,传统的CPFP方法很难通过具有不同度量集的项目来实现。CPFP的具体案例是异构故障预测(HFP),它允许程序预测具有不同度量的项目之间的故障。提出的框架旨在通过在源数据集和目标数据集上实现特征选择来实现HFP模型,从而使用监督机器学习技术构建有效的预测模型。我们的方法应用于两个开源项目,Linux和MySQL,并基于曲线下面积(AUC)性能度量来评估预测。该方法的主要结果如下:与跨项目相比,它在异构项目的预测性能上明显优于跨项目。同时,利用特征映射进行特征选择对HFP模型有显著的影响。应用非参数统计分析,如Friedman和Nemenyi事后检验,表明逻辑回归在HFP模型中的表现明显优于其他监督学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1