Sentiment Analysis of Amazon Product Reviews Using Machine Learning and Deep Learning Models

Joy Chandra Gope, Tanjim Tabassum, Mir Md. Mabrur, Keping Yu, Md. Arifuzzaman
{"title":"Sentiment Analysis of Amazon Product Reviews Using Machine Learning and Deep Learning Models","authors":"Joy Chandra Gope, Tanjim Tabassum, Mir Md. Mabrur, Keping Yu, Md. Arifuzzaman","doi":"10.1109/icaeee54957.2022.9836420","DOIUrl":null,"url":null,"abstract":"Due to the expansion of social networks and e-commerce websites, sentiment analysis or opinion mining has become a more active study issue in recent years. The objective of sentiment analysis is to identify and categorize the positive and negative sentiment expressed in a piece of text. Consumers can submit reviews with a specified rating on e-commerce websites like Amazon.com. As a result, in our paper, we sought to construct sentiment analysis related to product ratings and text reviews utilizing Amazon's dataset. Linear Support Vector Ma-chine, Random Forest, Multinomial Naive Bayes, Bernoulli Naive Bayes, and Logistic Regression were among the machine learning algorithms used. We acquired accuracy with the Random Forest classifier (91.90%). We also use RNN with LSTM as a deep learning approach in our paper and got maximum accuracy (97.52%). For our model RNN-LSTM is ideal approach.","PeriodicalId":383872,"journal":{"name":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaeee54957.2022.9836420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Due to the expansion of social networks and e-commerce websites, sentiment analysis or opinion mining has become a more active study issue in recent years. The objective of sentiment analysis is to identify and categorize the positive and negative sentiment expressed in a piece of text. Consumers can submit reviews with a specified rating on e-commerce websites like Amazon.com. As a result, in our paper, we sought to construct sentiment analysis related to product ratings and text reviews utilizing Amazon's dataset. Linear Support Vector Ma-chine, Random Forest, Multinomial Naive Bayes, Bernoulli Naive Bayes, and Logistic Regression were among the machine learning algorithms used. We acquired accuracy with the Random Forest classifier (91.90%). We also use RNN with LSTM as a deep learning approach in our paper and got maximum accuracy (97.52%). For our model RNN-LSTM is ideal approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习和深度学习模型的亚马逊产品评论情感分析
由于社交网络和电子商务网站的扩张,情感分析或意见挖掘近年来成为一个更活跃的研究问题。情感分析的目的是识别和分类一篇文章中表达的积极和消极情绪。消费者可以在亚马逊(Amazon.com)等电子商务网站上提交带有特定评级的评论。因此,在我们的论文中,我们试图利用亚马逊的数据集构建与产品评级和文本评论相关的情感分析。线性支持向量机、随机森林、多项朴素贝叶斯、伯努利朴素贝叶斯和逻辑回归是使用的机器学习算法之一。我们使用随机森林分类器获得了91.90%的准确率。在我们的论文中,我们还使用RNN与LSTM作为深度学习方法,并获得了最高的准确率(97.52%)。对于我们的模型,RNN-LSTM是一种理想的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a Multi-band Sierpinski Carpet Fractal Antenna With Modified Ground Plane Effect of Number of Modes of EMD in Respiratory Rate Estimation from PPG Signal An User Interest and Payment-aware Automated Car Parking System for the Bangladeshi People Using Android Application An Improved Load Frequency Control Strategy for Single & Multi-Area Power System Wall Shear Stress Assessment of Aorta with Varying Low-density Lipoprotein Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1