AVS encoding optimization with perceptual just noticeable distortion model

Qi Cai, Li Song
{"title":"AVS encoding optimization with perceptual just noticeable distortion model","authors":"Qi Cai, Li Song","doi":"10.1109/ICICS.2013.6782937","DOIUrl":null,"url":null,"abstract":"Integrating efficient visual perceptual cues into standardized video coding framework can improve performance significantly. In this paper we propose to enhance AVS encoder by using the latest just noticeable distortion (JND) model to adjust DCT coefficients of prediction residues in a content adaptive way. To better modeling JND profile in AVS integer DCT domain, we further derive the JND mapping from the classical DCT domain to AVS Integer DCT domain. The experiment shows that the proposed algorithm can reduce the bitrate by about 13% on average, compared to the AVS standard encoder at similar visual quality.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Integrating efficient visual perceptual cues into standardized video coding framework can improve performance significantly. In this paper we propose to enhance AVS encoder by using the latest just noticeable distortion (JND) model to adjust DCT coefficients of prediction residues in a content adaptive way. To better modeling JND profile in AVS integer DCT domain, we further derive the JND mapping from the classical DCT domain to AVS Integer DCT domain. The experiment shows that the proposed algorithm can reduce the bitrate by about 13% on average, compared to the AVS standard encoder at similar visual quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于感知仅可察觉失真模型的AVS编码优化
将有效的视觉感知线索集成到标准化的视频编码框架中可以显著提高性能。本文提出利用最新的刚可注意失真(JND)模型以内容自适应的方式调整预测残差的DCT系数来增强AVS编码器。为了更好地在AVS整数DCT域中建模JND轮廓,我们进一步推导了从经典DCT域到AVS整数DCT域的JND映射。实验表明,在相同的视觉质量下,与AVS标准编码器相比,该算法可以将比特率平均降低约13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1