A Robust Neural Network Based Short Time Electricity Price Prediction

Anany Pandey, Manish Pandey
{"title":"A Robust Neural Network Based Short Time Electricity Price Prediction","authors":"Anany Pandey, Manish Pandey","doi":"10.1109/ICCT56969.2023.10075993","DOIUrl":null,"url":null,"abstract":"Price prediction and load forecasting is a difficult task for industries. Electricity price are varied according to load or demand of energy. In this article suggested a novel approach for load and price forecasting based on neural network with improved Polak-Rlbière-Polyak(PRP) learning approach. For training and testing purpose use Russian wholesale market. For the implementation and simulation of proposed approach use matrix laboratory (MATLAB) R2020a and high performance computing (HPC) lab. For the evaluation of proposed method use different result parameter mean absolute percentage error, mean square error and root mean square error. The proposed approach shows lower error rate as compare to different techniques proposed by different researchers in terms of MSE, RMSE and MAPE. For the proposed method MAPE value is 1.2069%.","PeriodicalId":128100,"journal":{"name":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56969.2023.10075993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Price prediction and load forecasting is a difficult task for industries. Electricity price are varied according to load or demand of energy. In this article suggested a novel approach for load and price forecasting based on neural network with improved Polak-Rlbière-Polyak(PRP) learning approach. For training and testing purpose use Russian wholesale market. For the implementation and simulation of proposed approach use matrix laboratory (MATLAB) R2020a and high performance computing (HPC) lab. For the evaluation of proposed method use different result parameter mean absolute percentage error, mean square error and root mean square error. The proposed approach shows lower error rate as compare to different techniques proposed by different researchers in terms of MSE, RMSE and MAPE. For the proposed method MAPE value is 1.2069%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒神经网络的短期电价预测
价格预测和负荷预测是一项艰巨的任务。电价根据负荷或能源需求而变化。本文提出了一种基于神经网络的负荷和电价预测新方法,改进了polak - rlbi - polak (PRP)学习方法。用于培训和测试目的使用俄罗斯批发市场。采用矩阵实验室(MATLAB) R2020a和高性能计算实验室(HPC)对所提出的方法进行实现和仿真。采用不同的结果参数对所提出的方法进行评价,分别为平均绝对百分比误差、均方误差和均方根误差。与不同研究人员在MSE、RMSE和MAPE方面提出的不同方法相比,该方法的错误率较低。对于提出的方法,MAPE值为1.2069%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About ICCT '23 A Novel Technique to Detect URL Phishing based on Feature Count Effectiveness of Anti-Spoofing Protocols for Email Authentication Optimal Predictive Maintenance Technique for Manufacturing Semiconductors using Machine Learning Development of Secure IoT Ecosystems for Healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1