SNE: an Energy-Proportional Digital Accelerator for Sparse Event-Based Convolutions

Alfio Di Mauro, A. S. Prasad, Zhikai Huang, Matteo Spallanzani, Francesco Conti, L. Benini
{"title":"SNE: an Energy-Proportional Digital Accelerator for Sparse Event-Based Convolutions","authors":"Alfio Di Mauro, A. S. Prasad, Zhikai Huang, Matteo Spallanzani, Francesco Conti, L. Benini","doi":"10.48550/arXiv.2204.10687","DOIUrl":null,"url":null,"abstract":"Event-based sensors are drawing increasing attention due to their high temporal resolution, low power consumption, and low bandwidth. To efficiently extract semantically meaningful information from sparse data streams produced by such sensors, we present a 4.5TOP/s/W digital accelerator capable of performing 4-bits-quantized event-based convolutional neural networks (eCNN). Compared to standard convolutional engines, our accelerator performs a number of operations proportional to the number of events contained into the input data stream, ultimately achieving a high energy-to-information processing proportionality. On the IBM-DVS-Gesture dataset, we report 80uJ/inf to 261uJ/inf, respectively, when the input activity is 1.2% and 4.9%. Our accelerator consumes 0.221pJ/SOP, to the best of our knowledge it is the lowest energy/OP reported on a digital neuromorphic engine.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.10687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Event-based sensors are drawing increasing attention due to their high temporal resolution, low power consumption, and low bandwidth. To efficiently extract semantically meaningful information from sparse data streams produced by such sensors, we present a 4.5TOP/s/W digital accelerator capable of performing 4-bits-quantized event-based convolutional neural networks (eCNN). Compared to standard convolutional engines, our accelerator performs a number of operations proportional to the number of events contained into the input data stream, ultimately achieving a high energy-to-information processing proportionality. On the IBM-DVS-Gesture dataset, we report 80uJ/inf to 261uJ/inf, respectively, when the input activity is 1.2% and 4.9%. Our accelerator consumes 0.221pJ/SOP, to the best of our knowledge it is the lowest energy/OP reported on a digital neuromorphic engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SNE:稀疏事件卷积的能量比例数字加速器
基于事件的传感器以其高时间分辨率、低功耗、低带宽等优点而受到越来越多的关注。为了有效地从这些传感器产生的稀疏数据流中提取语义上有意义的信息,我们提出了一个4.5TOP/s/W的数字加速器,能够执行4位量化的基于事件的卷积神经网络(eCNN)。与标准的卷积引擎相比,我们的加速器执行的操作与输入数据流中包含的事件数量成正比,最终实现了高能量-信息处理比例。在IBM-DVS-Gesture数据集上,当输入活动为1.2%和4.9%时,我们分别报告了80uJ/inf到261uJ/inf。我们的加速器消耗0.221pJ/SOP,据我们所知,这是数字神经形态引擎中最低的能量/OP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1