Model-Free Learning Algorithms for Dynamic Transmission Control in IoT Equipment

Hanieh Malekijou, Vesal Hakami
{"title":"Model-Free Learning Algorithms for Dynamic Transmission Control in IoT Equipment","authors":"Hanieh Malekijou, Vesal Hakami","doi":"10.1109/ICSPIS54653.2021.9729333","DOIUrl":null,"url":null,"abstract":"We consider an energy-harvesting IoT device transmitting delay- and jitter-sensitive data over a wireless fading channel. Given the limited harvested energy, our goal is to compute optimal transmission control policies that decide on how many packets of data should be transmitted from the buffer's head-of-line at each discrete timeslot such that a long-run criterion involving the average delay/jitter is either minimized or never exceeds a pre-specified threshold. We utilize a suite of Q-learning-based techniques (from the reinforcement learning theory) to optimize the transmission policy in a model-free fashion. Compared to prior work, our novelty lies in proposing a model-free learning algorithm that enables jitter-aware transmissions by penalizing control decisions with the variance of the delay cost function. Extensive numerical results are presented for performance evaluation.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an energy-harvesting IoT device transmitting delay- and jitter-sensitive data over a wireless fading channel. Given the limited harvested energy, our goal is to compute optimal transmission control policies that decide on how many packets of data should be transmitted from the buffer's head-of-line at each discrete timeslot such that a long-run criterion involving the average delay/jitter is either minimized or never exceeds a pre-specified threshold. We utilize a suite of Q-learning-based techniques (from the reinforcement learning theory) to optimize the transmission policy in a model-free fashion. Compared to prior work, our novelty lies in proposing a model-free learning algorithm that enables jitter-aware transmissions by penalizing control decisions with the variance of the delay cost function. Extensive numerical results are presented for performance evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网设备动态传输控制的无模型学习算法
我们考虑一种能量收集物联网设备,通过无线衰落信道传输延迟和抖动敏感数据。给定有限的能量,我们的目标是计算最优的传输控制策略,以决定在每个离散时点应从缓冲区的线路头传输多少数据包,从而使涉及平均延迟/抖动的长期标准最小化或永远不超过预先指定的阈值。我们利用一套基于q学习的技术(来自强化学习理论)以无模型的方式优化传输策略。与之前的工作相比,我们的新颖之处在于提出了一种无模型学习算法,该算法通过用延迟代价函数的方差惩罚控制决策来实现抖动感知传输。广泛的数值结果提出了性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Fault Diagnosis of Rolling BearingBased on Deep Transfer Learning Using Time-Frequency Representation Wind Energy Potential Approximation with Various Metaheuristic Optimization Techniques Deployment Listening to Sounds of Silence for Audio replay attack detection Transcranial Magnetic Stimulation of Prefrontal Cortex Alters Functional Brain Network Architecture: Graph Theoretical Analysis Anomaly Detection and Resilience-Oriented Countermeasures against Cyberattacks in Smart Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1