Structure-activity relationships in glucocorticoids.

M E Wolff
{"title":"Structure-activity relationships in glucocorticoids.","authors":"M E Wolff","doi":"10.1007/978-3-642-81265-1_5","DOIUrl":null,"url":null,"abstract":"<p><p>Meaningful answers to the question of the relationship between glucocorticoid structure and activity have emerged. Structural change has predictable effects on susceptibility to the action of metabolizing enzymes, on receptor affinity, and on intrinsic activity. These effects are, in principle, amenable to mathematical modeling techniques. The fascinating possibility of being able to calculate receptor affinity directly from chemical structure has already been realized through the development of an equation [19] that allows the calculation of receptor binding of any glucocorticoid from structural parameters. Utilizing knowledge of the free energy contributions of the substituents and the hydrophobicity and A-ring conformation of the steroids, receptor affinity for a large number of compounds could be described in terms of four parameters. A general relationship was derived relating the equilibrium dissociation constant to a surface area term, a polar interaction term, and A-ring tilt term, and a size limitation function for the 9 alpha-substituent. The excellent correlation obtained suggests that these four factors are the major determinants of glucocorticoid receptor interactions. It is clear that the use of a mathematical relationship that defines the strength of steroid-receptor interaction is a valuable tool for investigating structure-activity relationships. This would be especially true in the design of steroid drugs. The use of a linear free-energy equation is superior to the assumption of substituent additivity in predicting binding affinities. This type of relationship will be useful in the preparation of steroids for use in affinity labeling studies and should be adaptable to other binding systems in which it is desirable to obtain synthetic analogs for more potent activity or specificity.</p>","PeriodicalId":76190,"journal":{"name":"Monographs on endocrinology","volume":"12 ","pages":"97-107"},"PeriodicalIF":0.0000,"publicationDate":"1979-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs on endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-81265-1_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Meaningful answers to the question of the relationship between glucocorticoid structure and activity have emerged. Structural change has predictable effects on susceptibility to the action of metabolizing enzymes, on receptor affinity, and on intrinsic activity. These effects are, in principle, amenable to mathematical modeling techniques. The fascinating possibility of being able to calculate receptor affinity directly from chemical structure has already been realized through the development of an equation [19] that allows the calculation of receptor binding of any glucocorticoid from structural parameters. Utilizing knowledge of the free energy contributions of the substituents and the hydrophobicity and A-ring conformation of the steroids, receptor affinity for a large number of compounds could be described in terms of four parameters. A general relationship was derived relating the equilibrium dissociation constant to a surface area term, a polar interaction term, and A-ring tilt term, and a size limitation function for the 9 alpha-substituent. The excellent correlation obtained suggests that these four factors are the major determinants of glucocorticoid receptor interactions. It is clear that the use of a mathematical relationship that defines the strength of steroid-receptor interaction is a valuable tool for investigating structure-activity relationships. This would be especially true in the design of steroid drugs. The use of a linear free-energy equation is superior to the assumption of substituent additivity in predicting binding affinities. This type of relationship will be useful in the preparation of steroids for use in affinity labeling studies and should be adaptable to other binding systems in which it is desirable to obtain synthetic analogs for more potent activity or specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖皮质激素的构效关系。
对糖皮质激素结构和活性之间关系的问题有意义的答案已经出现。结构变化对代谢酶的敏感性、受体亲和力和内在活性有可预测的影响。原则上,这些影响是可以用数学建模技术解决的。通过开发一个方程[19],可以从结构参数计算任何糖皮质激素的受体结合,已经实现了直接从化学结构计算受体亲和力的迷人可能性。利用取代基的自由能贡献以及甾体的疏水性和a环构象,受体对大量化合物的亲和力可以用四个参数来描述。导出了平衡解离常数与表面积项、极性相互作用项、A环倾斜项以及9取代基的大小限制函数之间的一般关系。所获得的良好相关性表明,这四个因素是糖皮质激素受体相互作用的主要决定因素。很明显,使用数学关系来定义类固醇受体相互作用的强度是研究结构-活性关系的有价值的工具。在类固醇药物的设计中尤其如此。线性自由能方程的使用优于取代基可加性的假设在预测结合亲和。这种类型的关系将有助于类固醇的制备,用于亲和标记研究,并应适用于其他结合系统,其中需要获得更有效的活性或特异性的合成类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Congenital adrenal hyperplasia. Hormone toxicity in the newborn. Neurobiology of reproduction in the female rat. A fifty-year perspective. High-Performance Liquid Chromatography in Endocrinology High-performance liquid chromatography of gastrointestinal hormones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1