Comparison Between A* and RRT Algorithms for 3D UAV Path Planning

C. Zammit, E. Kampen
{"title":"Comparison Between A* and RRT Algorithms for 3D UAV Path Planning","authors":"C. Zammit, E. Kampen","doi":"10.1142/s2301385022500078","DOIUrl":null,"url":null,"abstract":"This paper aims to present a comparative analysis of the two most utilized graph-based and sampling-based algorithms and their variants, in view of 3D UAV path planning in complex indoor environment. The findings of this analysis outline the usability of the methods and can assist future UAV path planning designers to select the best algorithm with the best parameter configuration in relation to the specific application. An extensive literature review of graph-based and sampling-based methods and their variants is first presented. The most utilized algorithms which are the A* for graph-based methods and Rapidly-Exploring Random Tree (RRT) for the sampling-based methods, are defined. A set of variants is also developed to mitigate with inherent shortcomings in the standard algorithms. All algorithms are then tested in the same scenarios and analyzed using the same performance measures. The A* algorithm generates shorter paths with respect to the RRT algorithm. The A* algorithm only explores volumes required for path generation while the RRT algorithms explore the space evenly. The A* algorithm exhibits an oscillatory behavior at different resolutions for the same scenario that is attenuated with the novel A* ripple reduction algorithm. The Multiple RRT generated longer unsmoothed paths in shorter planning times but required more smoothing over RRT. This work is the first attempt to compare graph-based and sampling-based algorithms in 3D path planning of UAVs. Furthermore, this work addresses shortcomings in both A* and RRT standard algorithms by developing a novel A* ripple reduction algorithm, a novel RRT variant and a specifically designed smoothing algorithm.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385022500078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper aims to present a comparative analysis of the two most utilized graph-based and sampling-based algorithms and their variants, in view of 3D UAV path planning in complex indoor environment. The findings of this analysis outline the usability of the methods and can assist future UAV path planning designers to select the best algorithm with the best parameter configuration in relation to the specific application. An extensive literature review of graph-based and sampling-based methods and their variants is first presented. The most utilized algorithms which are the A* for graph-based methods and Rapidly-Exploring Random Tree (RRT) for the sampling-based methods, are defined. A set of variants is also developed to mitigate with inherent shortcomings in the standard algorithms. All algorithms are then tested in the same scenarios and analyzed using the same performance measures. The A* algorithm generates shorter paths with respect to the RRT algorithm. The A* algorithm only explores volumes required for path generation while the RRT algorithms explore the space evenly. The A* algorithm exhibits an oscillatory behavior at different resolutions for the same scenario that is attenuated with the novel A* ripple reduction algorithm. The Multiple RRT generated longer unsmoothed paths in shorter planning times but required more smoothing over RRT. This work is the first attempt to compare graph-based and sampling-based algorithms in 3D path planning of UAVs. Furthermore, this work addresses shortcomings in both A* and RRT standard algorithms by developing a novel A* ripple reduction algorithm, a novel RRT variant and a specifically designed smoothing algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A*与RRT算法在无人机三维路径规划中的比较
针对复杂室内环境下的三维无人机路径规划问题,对基于图和基于采样两种最常用的算法及其变体进行了比较分析。该分析的结果概述了方法的可用性,并可以帮助未来的无人机路径规划设计者选择与特定应用相关的最佳参数配置的最佳算法。广泛的文献综述基于图和基于抽样的方法及其变体首先提出。定义了最常用的算法,即基于图的方法的A*和基于抽样的方法的快速探索随机树(RRT)。一组变体也被开发以减轻标准算法的固有缺陷。然后在相同的场景中测试所有算法,并使用相同的性能指标进行分析。相对于RRT算法,A*算法生成的路径更短。A*算法只探索路径生成所需的体积,而RRT算法则均匀地探索空间。对于相同的场景,A*算法在不同分辨率下表现出振荡行为,这种振荡行为被新型A*纹波减小算法衰减。Multiple RRT在较短的规划时间内生成较长的非平滑路径,但需要在RRT上进行更多的平滑。这项工作是第一次尝试比较基于图和基于采样的无人机三维路径规划算法。此外,本工作通过开发一种新的A*纹波减少算法、一种新的RRT变体和一种专门设计的平滑算法,解决了A*和RRT标准算法的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1