A Criterion for Deciding the Number of Clusters in a Dataset Based on Data Depth

Ishwar Baidari, Channamma Patil
{"title":"A Criterion for Deciding the Number of Clusters in a Dataset Based on Data Depth","authors":"Ishwar Baidari, Channamma Patil","doi":"10.1142/s2196888820500232","DOIUrl":null,"url":null,"abstract":"Clustering is a key method in unsupervised learning with various applications in data mining, pattern recognition and intelligent information processing. However, the number of groups to be formed, usually notated as [Formula: see text] is a vital parameter for most of the existing clustering algorithms as their clustering results depend heavily on this parameter. The problem of finding the optimal [Formula: see text] value is very challenging. This paper proposes a novel idea for finding the correct number of groups in a dataset based on data depth. The idea is to avoid the traditional process of running the clustering algorithm over a dataset for [Formula: see text] times and further, finding the [Formula: see text] value for a dataset without setting any specific search range for [Formula: see text] parameter. We experiment with different indices, namely CH, KL, Silhouette, Gap, CSP and the proposed method on different real and synthetic datasets to estimate the correct number of groups in a dataset. The experimental results on real and synthetic datasets indicate good performance of the proposed method.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering is a key method in unsupervised learning with various applications in data mining, pattern recognition and intelligent information processing. However, the number of groups to be formed, usually notated as [Formula: see text] is a vital parameter for most of the existing clustering algorithms as their clustering results depend heavily on this parameter. The problem of finding the optimal [Formula: see text] value is very challenging. This paper proposes a novel idea for finding the correct number of groups in a dataset based on data depth. The idea is to avoid the traditional process of running the clustering algorithm over a dataset for [Formula: see text] times and further, finding the [Formula: see text] value for a dataset without setting any specific search range for [Formula: see text] parameter. We experiment with different indices, namely CH, KL, Silhouette, Gap, CSP and the proposed method on different real and synthetic datasets to estimate the correct number of groups in a dataset. The experimental results on real and synthetic datasets indicate good performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据深度的数据集聚类数判定准则
聚类是无监督学习的一种关键方法,在数据挖掘、模式识别和智能信息处理等领域有着广泛的应用。然而,对于大多数现有的聚类算法来说,要形成的组的数量(通常记为[公式:见文本])是一个重要的参数,因为它们的聚类结果严重依赖于这个参数。寻找最优[公式:见文本]值的问题非常具有挑战性。本文提出了一种基于数据深度的数据集中查找正确组数的新思路。这个想法是为了避免在数据集上运行[Formula: see text]次的传统聚类算法,并且在不为[Formula: see text]参数设置任何特定搜索范围的情况下为数据集找到[Formula: see text]值。我们在不同的真实和合成数据集上实验了不同的指标,即CH, KL, Silhouette, Gap, CSP和所提出的方法,以估计数据集中正确的组数。在真实数据集和合成数据集上的实验结果表明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1