Meta-Labeling: Calibration and Position Sizing

Michael Meyer, Illya Barziy, J. Joubert
{"title":"Meta-Labeling: Calibration and Position Sizing","authors":"Michael Meyer, Illya Barziy, J. Joubert","doi":"10.3905/jfds.2023.1.119","DOIUrl":null,"url":null,"abstract":"Meta-labeling is a recently developed tool for determining the position size of a trade. It involves applying a secondary model to produce an output that can be interpreted as the estimated probability of a profitable trade, which can then be used to size positions. Before sizing the position, probability calibration can be applied to bring the model’s estimates closer to true posterior probabilities. This article investigates the use of these estimated probabilities, both uncalibrated and calibrated, in six position sizing algorithms. The algorithms used in this article include established methods used in practice and variations thereon, as well as a novel method called sigmoid optimal position sizing. The position sizing methods are evaluated and compared using strategy metrics such as the Sharpe ratio and maximum drawdown. The results indicate that the performance of fixed position sizing methods is significantly improved by calibration, whereas methods that estimate their functions from the training data do not gain any significant advantage from probability calibration.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Meta-labeling is a recently developed tool for determining the position size of a trade. It involves applying a secondary model to produce an output that can be interpreted as the estimated probability of a profitable trade, which can then be used to size positions. Before sizing the position, probability calibration can be applied to bring the model’s estimates closer to true posterior probabilities. This article investigates the use of these estimated probabilities, both uncalibrated and calibrated, in six position sizing algorithms. The algorithms used in this article include established methods used in practice and variations thereon, as well as a novel method called sigmoid optimal position sizing. The position sizing methods are evaluated and compared using strategy metrics such as the Sharpe ratio and maximum drawdown. The results indicate that the performance of fixed position sizing methods is significantly improved by calibration, whereas methods that estimate their functions from the training data do not gain any significant advantage from probability calibration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元标记:校准和位置大小
元标签是最近开发的一种确定交易头寸规模的工具。它涉及到应用一个二级模型来产生一个输出,这个输出可以被解释为一笔盈利交易的估计概率,然后可以用来确定头寸的大小。在确定位置大小之前,可以应用概率校准使模型的估计更接近真实的后验概率。本文研究了这些估计概率的使用,包括未校准和校准,在六个位置大小算法。本文中使用的算法包括在实践中使用的既定方法及其变体,以及一种称为s形最优位置大小的新方法。位置的大小方法进行评估和比较,使用战略指标,如夏普比率和最大收缩。结果表明,校正后的定位定尺方法的性能得到显著提高,而根据训练数据估计其函数的方法在概率校正后没有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1