Multi-robot task allocation based on utility and distributed computing and centralized determination

Fei Liu, Shan Liang, Xiaodong Xian
{"title":"Multi-robot task allocation based on utility and distributed computing and centralized determination","authors":"Fei Liu, Shan Liang, Xiaodong Xian","doi":"10.1109/CCDC.2015.7162482","DOIUrl":null,"url":null,"abstract":"This paper proposes a Distributed Computing and Centralized Determination (DCCD) method to solve the multi-robot task allocation problem, in order to maximize the utility of the whole robot system. First, a utility model is presented which takes the cost for executing tasks and the quality of task completing time into consideration. DCCD employs each robot to compute and provide sub-plans for executing one or multiple tasks. Then, the task manager forms allocations for accomplishing tasks using all the sub-plans and determine the optimal one according to the utility model. Compared with fully-centralized allocation, this method can reduce the computation largely for task manager. Theoretical analysis and simulation verify the effectiveness of DCCD, and shows that DCCD can obtain global optimal allocation comparing with the fact that the widely-used single-item and combinational auction methods can only obtain local optimal solution.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a Distributed Computing and Centralized Determination (DCCD) method to solve the multi-robot task allocation problem, in order to maximize the utility of the whole robot system. First, a utility model is presented which takes the cost for executing tasks and the quality of task completing time into consideration. DCCD employs each robot to compute and provide sub-plans for executing one or multiple tasks. Then, the task manager forms allocations for accomplishing tasks using all the sub-plans and determine the optimal one according to the utility model. Compared with fully-centralized allocation, this method can reduce the computation largely for task manager. Theoretical analysis and simulation verify the effectiveness of DCCD, and shows that DCCD can obtain global optimal allocation comparing with the fact that the widely-used single-item and combinational auction methods can only obtain local optimal solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于效用和分布式计算的多机器人任务分配与集中确定
为了使整个机器人系统的效用最大化,本文提出了一种分布式计算和集中确定(DCCD)方法来解决多机器人任务分配问题。首先,提出了一种兼顾任务执行成本和任务完成时间质量的实用新型。DCCD利用每个机器人计算并提供执行一个或多个任务的子计划。然后,任务管理器利用所有子计划对完成任务进行分配,并根据本实用新型确定最优子计划。与全集中分配相比,该方法大大减少了任务管理器的计算量。理论分析和仿真验证了DCCD方法的有效性,表明DCCD方法能够获得全局最优分配,而目前广泛使用的单品和组合拍卖方法只能获得局部最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application and design of attack and defense algorithms in WTN chess of computer games Research on calculating method of hidden layer nodes in BP network An improved GAFSA with adaptive step chaotic search The research on flywheel acceleration assessment with null motion escaping singularity for variable speed control moment gyros A multiple sub-models self-tuning control algorithm of non-uniformly sampled systems based on auxiliary-variable-model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1