IBEX: Harvesting Entities from the Web Using Unique Identifiers

Aliaksandr Talaika, J. Biega, Antoine Amarilli, Fabian M. Suchanek
{"title":"IBEX: Harvesting Entities from the Web Using Unique Identifiers","authors":"Aliaksandr Talaika, J. Biega, Antoine Amarilli, Fabian M. Suchanek","doi":"10.1145/2767109.2767116","DOIUrl":null,"url":null,"abstract":"In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with humanreadable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.","PeriodicalId":316270,"journal":{"name":"Proceedings of the 18th International Workshop on Web and Databases","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Workshop on Web and Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2767109.2767116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with humanreadable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IBEX:使用唯一标识符从Web中获取实体
在本文中,我们研究了唯一实体标识符在Web上的流行。例如,isbn(用于图书)、gtin(用于商业产品)、doi(用于文档)、电子邮件地址等等。我们将展示如何从Web页面系统地获取这些标识符,以及如何将它们与大规模实体的人类可读名称相关联。从简单地从Web页面中提取标识符和名称开始,我们将展示如何使用唯一标识符的属性来过滤噪声并清理整个语料库上的提取结果。最终的结果是一个包含数百万个不同类型的唯一标识实体的数据库,与现有的知识库相比,准确率达到73- 96%,覆盖率非常高。我们使用这个数据库来计算关于Web上产品、人员和其他实体存在的新统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Subsumption Relationships for Web-Based Ontologies Truth Finding with Attribute Partitioning Long-term Optimization of Update Frequencies for Decaying Information Analyzing Crowd Rankings The elephant in the room: getting value from Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1