{"title":"Multiple Real-time object identification using Single shot Multi-Box detection","authors":"S. Kanimozhi, G. Gayathri, T. Mala","doi":"10.1109/ICCIDS.2019.8862041","DOIUrl":null,"url":null,"abstract":"Real time object detection is one of the challenging task as it need faster computation power in identifying the object at that time. However the data generated by any real time system are unlabelled data which often need large set of labeled data for effective training purpose. This paper proposed a faster detection method for real time object detection based on convolution neural network model called as Single Shot Multi-Box Detection(SSD).This work eliminates the feature resampling stage and combined all calculated results as a single component. Still there is a need of a light weight network model for the places which lacks in computational power like mobile devices( eg: laptop, mobile phones, etc). Thus a light weight network model which use depth-wise separable convolution called MobileNet is used in this proposed work. Experimental result reveal that use of MobileNet along with SSD model increase the accuracy level in identifying the real time household objects.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Real time object detection is one of the challenging task as it need faster computation power in identifying the object at that time. However the data generated by any real time system are unlabelled data which often need large set of labeled data for effective training purpose. This paper proposed a faster detection method for real time object detection based on convolution neural network model called as Single Shot Multi-Box Detection(SSD).This work eliminates the feature resampling stage and combined all calculated results as a single component. Still there is a need of a light weight network model for the places which lacks in computational power like mobile devices( eg: laptop, mobile phones, etc). Thus a light weight network model which use depth-wise separable convolution called MobileNet is used in this proposed work. Experimental result reveal that use of MobileNet along with SSD model increase the accuracy level in identifying the real time household objects.