Multiple Real-time object identification using Single shot Multi-Box detection

S. Kanimozhi, G. Gayathri, T. Mala
{"title":"Multiple Real-time object identification using Single shot Multi-Box detection","authors":"S. Kanimozhi, G. Gayathri, T. Mala","doi":"10.1109/ICCIDS.2019.8862041","DOIUrl":null,"url":null,"abstract":"Real time object detection is one of the challenging task as it need faster computation power in identifying the object at that time. However the data generated by any real time system are unlabelled data which often need large set of labeled data for effective training purpose. This paper proposed a faster detection method for real time object detection based on convolution neural network model called as Single Shot Multi-Box Detection(SSD).This work eliminates the feature resampling stage and combined all calculated results as a single component. Still there is a need of a light weight network model for the places which lacks in computational power like mobile devices( eg: laptop, mobile phones, etc). Thus a light weight network model which use depth-wise separable convolution called MobileNet is used in this proposed work. Experimental result reveal that use of MobileNet along with SSD model increase the accuracy level in identifying the real time household objects.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Real time object detection is one of the challenging task as it need faster computation power in identifying the object at that time. However the data generated by any real time system are unlabelled data which often need large set of labeled data for effective training purpose. This paper proposed a faster detection method for real time object detection based on convolution neural network model called as Single Shot Multi-Box Detection(SSD).This work eliminates the feature resampling stage and combined all calculated results as a single component. Still there is a need of a light weight network model for the places which lacks in computational power like mobile devices( eg: laptop, mobile phones, etc). Thus a light weight network model which use depth-wise separable convolution called MobileNet is used in this proposed work. Experimental result reveal that use of MobileNet along with SSD model increase the accuracy level in identifying the real time household objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单次多盒检测的多实时目标识别
实时目标检测是一项具有挑战性的任务,因为它需要更快的计算能力来识别目标。然而,任何实时系统生成的数据都是未标记的数据,通常需要大量的标记数据才能进行有效的训练。本文提出了一种基于卷积神经网络模型的快速实时目标检测方法——单镜头多盒检测(SSD)。这项工作消除了特征重采样阶段,并将所有计算结果合并为单个分量。对于像移动设备(如笔记本电脑、移动电话等)这样缺乏计算能力的地方,仍然需要一个轻量级的网络模型。因此,在本工作中使用了一种使用深度可分离卷积的轻量级网络模型MobileNet。实验结果表明,MobileNet与SSD模型结合使用,提高了实时家庭物体识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Region Based Convolutional Neural Network for Human-Elephant Conflict Management System A Comparison of Regression Models for Prediction of Graduate Admissions Feature selection with LASSO and VSURF to model mechanical properties for investment casting Med-Recommender System for Predictive Analysis of Hospitals and Doctors Analysis of Facial Landmark Features to determine the best subset for finding Face Orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1