J. Perrin, Stanislav Gankov, Walter Downing, S. Rengarajan, Scott Hotz, Piyush S Bhagdikar, Joshua Alden
{"title":"Development of a Model-Based Drive-By-Wire System for Level 4 Automated Vehicles","authors":"J. Perrin, Stanislav Gankov, Walter Downing, S. Rengarajan, Scott Hotz, Piyush S Bhagdikar, Joshua Alden","doi":"10.1109/SysCon53073.2023.10131104","DOIUrl":null,"url":null,"abstract":"Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can reduce energy consumption by generating energy-efficient speed trajectories. One of the key challenges from an implementation perspective is to be able to execute the desired speed or acceleration commands closely. A SAE Level 4 CAV is being developed in conjunction with eco-driving to help address this issue. A custom drive-by-wire (DBW) system was built for a Honda Clarity plug-in hybrid electric vehicle (PHEV) to enable precise actuation of accelerator, brake, and steering. Transient vehicle data collected over a variety of drive cycles was synthesized to model pedal characteristics as a function of speed and target acceleration. The developed transfer functions enabled feed-forward control of the accelerator and brake pedals with a closed-loop controller handling the rest. Low speed steering maneuvers were performed to characterize the required steering torque to maintain a steady-state steering angle at different vehicle speeds. Advanced vehicle simulation software was used to understand vehicle dynamics and wheel angle response at different speeds. The development of a model based DBW system along with implementation details and results are presented.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can reduce energy consumption by generating energy-efficient speed trajectories. One of the key challenges from an implementation perspective is to be able to execute the desired speed or acceleration commands closely. A SAE Level 4 CAV is being developed in conjunction with eco-driving to help address this issue. A custom drive-by-wire (DBW) system was built for a Honda Clarity plug-in hybrid electric vehicle (PHEV) to enable precise actuation of accelerator, brake, and steering. Transient vehicle data collected over a variety of drive cycles was synthesized to model pedal characteristics as a function of speed and target acceleration. The developed transfer functions enabled feed-forward control of the accelerator and brake pedals with a closed-loop controller handling the rest. Low speed steering maneuvers were performed to characterize the required steering torque to maintain a steady-state steering angle at different vehicle speeds. Advanced vehicle simulation software was used to understand vehicle dynamics and wheel angle response at different speeds. The development of a model based DBW system along with implementation details and results are presented.