I. Isasi, E. Alonso, U. Irusta, E. Aramendi, M. Zabihi, Ali Bahrami Rad, T. Eftestøl, J. Kramer-Johansen, L. Wik
{"title":"A Machine Learning-Based Pulse Detection Algorithm for Use During Cardiopulmonary Resuscitation","authors":"I. Isasi, E. Alonso, U. Irusta, E. Aramendi, M. Zabihi, Ali Bahrami Rad, T. Eftestøl, J. Kramer-Johansen, L. Wik","doi":"10.23919/cinc53138.2021.9662778","DOIUrl":null,"url":null,"abstract":"Resuscitation guidelines mandate pausing chest compressions (CCs) during cardiopulmonary resuscitation (CPR) to check for the presence of pulse. However, interrupting CPR during a pulseless rhythm adversely affects survival. The aim of this study was to develop a pulse detection algorithm during CPR using the ECG and thoracic impedance (TI) signals. Data were collected from 116 out-of-hospital cardiac arrest (OHCA) patients during CCs and pulse/no-pulse annotations were carried out in artefact-free intervals by clinicians. CC artefacts were first removed from ECG and TI using recursive least-squares (RLS) filters. The impedance circulation component (ICC) was then derived from the filtered TI using a RLS-based adaptive scheme. The wavelet decomposition of the ECG and ICC was carried out to obtain the different subband components and the reconstruced ECG and ICC. A total of 124 discrimination features were extracted from those signals andfed into a random forest (RF) classifier that made the pulse/no-pulse decision. A repeated cross-validation procedure was used for feature selection, parameter tuning, and model assessment. Pulse/no-pulse diagnoses obtained through the RF were compared with the annotations to obtain the sensitivity (SE), specificity (SP) and balanced accuracy (BAC) of the method. The results obtained were: 76.2% (SE), 66.2% (SP) and 71.2% (BAC).","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Resuscitation guidelines mandate pausing chest compressions (CCs) during cardiopulmonary resuscitation (CPR) to check for the presence of pulse. However, interrupting CPR during a pulseless rhythm adversely affects survival. The aim of this study was to develop a pulse detection algorithm during CPR using the ECG and thoracic impedance (TI) signals. Data were collected from 116 out-of-hospital cardiac arrest (OHCA) patients during CCs and pulse/no-pulse annotations were carried out in artefact-free intervals by clinicians. CC artefacts were first removed from ECG and TI using recursive least-squares (RLS) filters. The impedance circulation component (ICC) was then derived from the filtered TI using a RLS-based adaptive scheme. The wavelet decomposition of the ECG and ICC was carried out to obtain the different subband components and the reconstruced ECG and ICC. A total of 124 discrimination features were extracted from those signals andfed into a random forest (RF) classifier that made the pulse/no-pulse decision. A repeated cross-validation procedure was used for feature selection, parameter tuning, and model assessment. Pulse/no-pulse diagnoses obtained through the RF were compared with the annotations to obtain the sensitivity (SE), specificity (SP) and balanced accuracy (BAC) of the method. The results obtained were: 76.2% (SE), 66.2% (SP) and 71.2% (BAC).