Kang-Ho Lee, Jeonghun Nam, Sukhwan Choi, Hyunjung Lim, Sehyun Shin, G. Cho
{"title":"A CMOS impedance cytometer for 3D flowing single-cell real-time analysis with ΔΣ error correction","authors":"Kang-Ho Lee, Jeonghun Nam, Sukhwan Choi, Hyunjung Lim, Sehyun Shin, G. Cho","doi":"10.1109/ISSCC.2012.6177024","DOIUrl":null,"url":null,"abstract":"Flow cytometry is an essential cell analysis technology in clinical immunology and haematology for the diagnosis and prognosis of disease. It involves the counting, identification and sorting of cells [1,2]. Conventional bulk measurements [3] require a large volume of blood, which is not desirable for the early detection of a disease, when only a very small percentage of cells contain evidence of the disease. In this paper, we propose, for the first time, a non-invasive and high-throughput single-cell analysis method using CMOS-integrated circuits in conjunction with a microfluidic channel as the first building block of a complete cell-sorting device.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6177024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Flow cytometry is an essential cell analysis technology in clinical immunology and haematology for the diagnosis and prognosis of disease. It involves the counting, identification and sorting of cells [1,2]. Conventional bulk measurements [3] require a large volume of blood, which is not desirable for the early detection of a disease, when only a very small percentage of cells contain evidence of the disease. In this paper, we propose, for the first time, a non-invasive and high-throughput single-cell analysis method using CMOS-integrated circuits in conjunction with a microfluidic channel as the first building block of a complete cell-sorting device.