Robust Anomaly Detection on Unreliable Data

Zilong Zhao, Sophie Cerf, R. Birke, B. Robu, S. Bouchenak, Sonia Ben Mokhtar, L. Chen
{"title":"Robust Anomaly Detection on Unreliable Data","authors":"Zilong Zhao, Sophie Cerf, R. Birke, B. Robu, S. Bouchenak, Sonia Ben Mokhtar, L. Chen","doi":"10.1109/DSN.2019.00068","DOIUrl":null,"url":null,"abstract":"Classification algorithms have been widely adopted to detect anomalies for various systems, e.g., IoT and cloud, under the common assumption that the data source is clean, i.e., features and labels are correctly set. However, data collected from the field can be unreliable due to careless annotations or malicious data transformation for incorrect anomaly detection. In this paper, we present a two-layer learning framework for robust anomaly detection (RAD) in the presence of unreliable anomaly labels. The first layer of quality model filters the suspicious data, where the second layer of classification model detects the anomaly types. We specifically focus on two use cases, (i) detecting 10 classes of IoT attacks and (ii) predicting 4 classes of task failures of big data jobs. Our evaluation results show that RAD can robustly improve the accuracy of anomaly detection, to reach up to 98% for IoT device attacks (i.e., +11%) and up to 83% for cloud task failures (i.e., +20%), under a significant percentage of altered anomaly labels. Index Terms—Unreliable Data; Anomaly Detection; Failures; Attacks; Machine Learning","PeriodicalId":271955,"journal":{"name":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2019.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Classification algorithms have been widely adopted to detect anomalies for various systems, e.g., IoT and cloud, under the common assumption that the data source is clean, i.e., features and labels are correctly set. However, data collected from the field can be unreliable due to careless annotations or malicious data transformation for incorrect anomaly detection. In this paper, we present a two-layer learning framework for robust anomaly detection (RAD) in the presence of unreliable anomaly labels. The first layer of quality model filters the suspicious data, where the second layer of classification model detects the anomaly types. We specifically focus on two use cases, (i) detecting 10 classes of IoT attacks and (ii) predicting 4 classes of task failures of big data jobs. Our evaluation results show that RAD can robustly improve the accuracy of anomaly detection, to reach up to 98% for IoT device attacks (i.e., +11%) and up to 83% for cloud task failures (i.e., +20%), under a significant percentage of altered anomaly labels. Index Terms—Unreliable Data; Anomaly Detection; Failures; Attacks; Machine Learning
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不可靠数据的鲁棒异常检测
分类算法被广泛用于检测各种系统的异常,例如物联网和云,通常假设数据源是干净的,即特征和标签是正确设置的。然而,由于粗心的注释或恶意的数据转换导致错误的异常检测,从现场收集的数据可能不可靠。在本文中,我们提出了一个两层学习框架,用于存在不可靠异常标签的鲁棒异常检测(RAD)。第一层质量模型对可疑数据进行过滤,第二层分类模型对异常类型进行检测。我们特别关注两个用例,(i)检测10类物联网攻击,(ii)预测4类大数据作业的任务失败。我们的评估结果表明,在异常标签发生显著改变的情况下,RAD可以显著提高异常检测的准确性,对物联网设备攻击的准确率高达98%(即+11%),对云任务失败的准确率高达83%(即+20%)。索引术语-不可靠数据;异常检测;失败;的攻击;机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting Memory Corruption Vulnerabilities in Connman for IoT Devices Efficient Treatment of Uncertainty in System Reliability Analysis using Importance Measures Characterizing and Understanding HPC Job Failures Over The 2K-Day Life of IBM BlueGene/Q System PrivAnalyzer: Measuring the Efficacy of Linux Privilege Use POLaR: Per-Allocation Object Layout Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1