Privacy preserving health data processing

Anders Andersen, K. Y. Yigzaw, Randi Karlsen
{"title":"Privacy preserving health data processing","authors":"Anders Andersen, K. Y. Yigzaw, Randi Karlsen","doi":"10.1109/HealthCom.2014.7001845","DOIUrl":null,"url":null,"abstract":"The usage of electronic health data from different sources for statistical analysis requires a toolset where the legal, security and privacy concerns have been taken into consideration. The health data are typically located at different general practices and hospitals. The data analysis consists of local processing at these locations, and the locations become nodes in a computing graph. To support the legal, security and privacy concerns, the proposed toolset for statistical analysis of health data uses a combination of secure multi-party computation (SMC) algorithms, symmetric and public key encryption, and public key infrastructure (PKI) with certificates and a certificate authority (CA). The proposed toolset should cover a wide range of data analysis with different data distributions. To achieve this, large set of possible SMC algorithms and computing graphs have to be supported.","PeriodicalId":269964,"journal":{"name":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2014.7001845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The usage of electronic health data from different sources for statistical analysis requires a toolset where the legal, security and privacy concerns have been taken into consideration. The health data are typically located at different general practices and hospitals. The data analysis consists of local processing at these locations, and the locations become nodes in a computing graph. To support the legal, security and privacy concerns, the proposed toolset for statistical analysis of health data uses a combination of secure multi-party computation (SMC) algorithms, symmetric and public key encryption, and public key infrastructure (PKI) with certificates and a certificate authority (CA). The proposed toolset should cover a wide range of data analysis with different data distributions. To achieve this, large set of possible SMC algorithms and computing graphs have to be supported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保护隐私的健康数据处理
使用来自不同来源的电子卫生数据进行统计分析需要一套考虑到法律、安全和隐私问题的工具集。健康数据通常位于不同的全科诊所和医院。数据分析由这些位置的本地处理组成,这些位置成为计算图中的节点。为了支持法律、安全和隐私方面的考虑,建议的健康数据统计分析工具集结合使用了安全多方计算(SMC)算法、对称和公钥加密以及带有证书和证书颁发机构(CA)的公钥基础设施(PKI)。建议的工具集应涵盖不同数据分布的广泛数据分析。为了实现这一点,必须支持大量可能的SMC算法和计算图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using online social media platforms for ubiquitous, personal health monitoring Standard-based and distributed health information sharing for mHealth IoT systems Towards health exercise behavior change for teams using life-logging An integrated approach of diet and exercise recommendations for diabetes patients Low complex, programmable FPGA based 8-channel ultrasound transmitter for medical imaging researches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1