Adapting MapReduce for Efficient Watermarking of Large Relational Dataset

S. Rani, Dileep Kumar Koshley, Raju Halder
{"title":"Adapting MapReduce for Efficient Watermarking of Large Relational Dataset","authors":"S. Rani, Dileep Kumar Koshley, Raju Halder","doi":"10.1109/Trustcom/BigDataSE/ICESS.2017.306","DOIUrl":null,"url":null,"abstract":"In the era of big-data when volume is increasing at an unprecedented rate, structured data is not an exception from this. A survey in 2013 by TDWI says that, for a quarter of organizations, big-data mostly takes the form of the relational and structured data that comes from traditional applications. In this reality, watermarking of large volume of structured relational dataset using existing watermarking techniques are highly inefficient, and even impractical in the situations when periodic rewatermarking after a certain time frame is necessary. As a remedy of this, in this paper, we adapt MapReduce as an effective distributive way of watermarking of large relational dataset. We show how existing algorithms can easily be converted into an equivalent form in MapReduce paradigm. We present experimental evaluation results on a benchmark dataset to establish the effectiveness of our approach. The results demonstrate significant improvements in watermark generation and detection times w.r.t. existing works in the literature.","PeriodicalId":170253,"journal":{"name":"2017 IEEE Trustcom/BigDataSE/ICESS","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Trustcom/BigDataSE/ICESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the era of big-data when volume is increasing at an unprecedented rate, structured data is not an exception from this. A survey in 2013 by TDWI says that, for a quarter of organizations, big-data mostly takes the form of the relational and structured data that comes from traditional applications. In this reality, watermarking of large volume of structured relational dataset using existing watermarking techniques are highly inefficient, and even impractical in the situations when periodic rewatermarking after a certain time frame is necessary. As a remedy of this, in this paper, we adapt MapReduce as an effective distributive way of watermarking of large relational dataset. We show how existing algorithms can easily be converted into an equivalent form in MapReduce paradigm. We present experimental evaluation results on a benchmark dataset to establish the effectiveness of our approach. The results demonstrate significant improvements in watermark generation and detection times w.r.t. existing works in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MapReduce的大型关系数据集高效水印
在数据量以前所未有的速度增长的大数据时代,结构化数据也不例外。TDWI在2013年进行的一项调查显示,对于四分之一的组织来说,大数据主要是来自传统应用程序的关系数据和结构化数据。在这种情况下,使用现有的水印技术对大容量的结构化关系数据集进行水印是非常低效的,甚至在需要在一定时间框架后周期性地重新进行水印的情况下是不切实际的。为了解决这一问题,本文采用MapReduce作为一种有效的分布式方法对大型关系数据集进行水印处理。我们展示了如何将现有算法轻松转换为MapReduce范式中的等效形式。我们在一个基准数据集上给出了实验评估结果,以确定我们的方法的有效性。结果表明,与现有文献相比,该方法在水印生成和检测次数方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insider Threat Detection Through Attributed Graph Clustering SEEAD: A Semantic-Based Approach for Automatic Binary Code De-obfuscation A Public Key Encryption Scheme for String Identification Vehicle Incident Hot Spots Identification: An Approach for Big Data Implementing Chain of Custody Requirements in Database Audit Records for Forensic Purposes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1