Automatic ECG artifact removal in the real-time SEMG recording system

Yong Hu, Jerry Kwok, J. Tse
{"title":"Automatic ECG artifact removal in the real-time SEMG recording system","authors":"Yong Hu, Jerry Kwok, J. Tse","doi":"10.1109/CIVEMSA.2013.6617398","DOIUrl":null,"url":null,"abstract":"The contaminated electrocardiography (ECG) is a big problem in the surface electromyography (SEMG) signal detection and analysis. The objective of the current study is to propose and validate an algorithm for the automated feature cognition and identification for eliminating ECG artifact from the raw SEMG signals. The utilization of Independent Component Analysis (ICA) method is to decompose the raw SEMG signals into individual independent source components. After that, some of the independent source components with the characteristics of ECG artifact were detected by the automated identification algorithm and thereafter eliminated. The sensitivity and specificity of the algorithm for distinguishing ECG source components from independent source components are 100% and 99% respectively. The automated identification algorithm exhibits the prominent performance of recognition for ECG artifact and can be considered reliable and effective.","PeriodicalId":159100,"journal":{"name":"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2013.6617398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The contaminated electrocardiography (ECG) is a big problem in the surface electromyography (SEMG) signal detection and analysis. The objective of the current study is to propose and validate an algorithm for the automated feature cognition and identification for eliminating ECG artifact from the raw SEMG signals. The utilization of Independent Component Analysis (ICA) method is to decompose the raw SEMG signals into individual independent source components. After that, some of the independent source components with the characteristics of ECG artifact were detected by the automated identification algorithm and thereafter eliminated. The sensitivity and specificity of the algorithm for distinguishing ECG source components from independent source components are 100% and 99% respectively. The automated identification algorithm exhibits the prominent performance of recognition for ECG artifact and can be considered reliable and effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时表面肌电信号记录系统中心电伪影的自动去除
心电图污染是肌表电信号检测与分析中的一大难题。本研究的目的是提出并验证一种从原始表面肌电信号中消除心电伪影的自动特征认知和识别算法。利用独立分量分析(ICA)方法将原始表面肌电信号分解成独立的源分量。然后,通过自动识别算法检测出一些具有心电伪影特征的独立源分量,然后剔除。该算法区分心电源分量和独立源分量的灵敏度和特异性分别为100%和99%。该自动识别算法对心电伪信号的识别性能突出,可以认为是可靠有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent SVM based food intake measurement system An ANN based system for forecasting ship roll motion Computational Intelligence based construction of a Body Condition Assessment system for cattle Facial expression cloning with fuzzy set clustering The impact of motion in virtual environments on memorization performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1