A spherical subspace based adaptive filter

E. Dowling, R. DeGroat
{"title":"A spherical subspace based adaptive filter","authors":"E. Dowling, R. DeGroat","doi":"10.1109/ICASSP.1993.319545","DOIUrl":null,"url":null,"abstract":"The authors use the adaptation mechanism of the spherical subspace tracker together with the weighting scheme of total least squares (TLS) to construct an adaptive filter that tracks solutions to time-varying ordinary least squares. TLS, data least squares, and reduced rank problems. To study convergence properties, they relate this filter to Thompson's constrained stochastic gradient eigenfilter. They present a convergence rate acceleration scheme that keeps the filter from being slowed down by saddle points in the performance surface. Simulation results verify the theoretical development. The filter behaves well in the full rank case and is more sensitive and slow to converge in certain reduced rank problems.<<ETX>>","PeriodicalId":428449,"journal":{"name":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1993.319545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The authors use the adaptation mechanism of the spherical subspace tracker together with the weighting scheme of total least squares (TLS) to construct an adaptive filter that tracks solutions to time-varying ordinary least squares. TLS, data least squares, and reduced rank problems. To study convergence properties, they relate this filter to Thompson's constrained stochastic gradient eigenfilter. They present a convergence rate acceleration scheme that keeps the filter from being slowed down by saddle points in the performance surface. Simulation results verify the theoretical development. The filter behaves well in the full rank case and is more sensitive and slow to converge in certain reduced rank problems.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于球面子空间的自适应滤波器
利用球面子空间跟踪器的自适应机制,结合总最小二乘(TLS)的加权格式,构造了一个跟踪时变普通最小二乘解的自适应滤波器。TLS,数据最小二乘和降秩问题。为了研究收敛性,他们将该滤波器与汤普森约束随机梯度特征滤波器联系起来。他们提出了一种收敛速率加速方案,使滤波器不会因性能表面的鞍点而减慢速度。仿真结果验证了理论的发展。该滤波器在全秩情况下表现良好,在某些降秩问题上更为敏感,收敛速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling, analysis, and compensation of quantization effects in M-band subband codecs Matched field source detection and localization in high noise environments: A novel reduced-rank signal processing approach Enhanced video compression with standardized bit stream syntax Formally correct translation of DSP algorithms specified in an asynchronous applicative language All-thru DSP provision, essential for the modern EE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1