Restoration of spiky signals: a new optimal estimate and a comparison

C. Heinrich, J. Bercher, G. L. Besnerais, G. Demoment
{"title":"Restoration of spiky signals: a new optimal estimate and a comparison","authors":"C. Heinrich, J. Bercher, G. L. Besnerais, G. Demoment","doi":"10.1109/ICASSP.1995.480314","DOIUrl":null,"url":null,"abstract":"Discusses the restoration of spiky sequences distorted by a linear\nsystem and corrupted by additive noise. A (now) classical way of coping\nwith this problem is to use a Bayesian approach with a\nBernoulli-Gaussian (BG) prior model of the sequence. The authors refine\nthis method using a Bernoulli-Gaussian plus Gaussian (BCG) prior model.\nThis estimation method requires maximization of a posterior probability\ndistribution, which cannot be performed optimally. Thus the authors\npropose a new non-Bayesian estimation scheme, derived from the\nKullback-Leibler information or cross-entropy. This quite general\nmethod, called the maximum entropy on the mean method (MEMM) in Gamboa\n(1989) and le Besnerais (1995) is firmly based on convex analysis and\nyields a unique solution which can be efficiently calculated in\npractice, and which is, in this sense, truly optimal. As a conclusion,\nthe authors present results obtained with both methods on a synthetic\ncase","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.480314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Discusses the restoration of spiky sequences distorted by a linear system and corrupted by additive noise. A (now) classical way of coping with this problem is to use a Bayesian approach with a Bernoulli-Gaussian (BG) prior model of the sequence. The authors refine this method using a Bernoulli-Gaussian plus Gaussian (BCG) prior model. This estimation method requires maximization of a posterior probability distribution, which cannot be performed optimally. Thus the authors propose a new non-Bayesian estimation scheme, derived from the Kullback-Leibler information or cross-entropy. This quite general method, called the maximum entropy on the mean method (MEMM) in Gamboa (1989) and le Besnerais (1995) is firmly based on convex analysis and yields a unique solution which can be efficiently calculated in practice, and which is, in this sense, truly optimal. As a conclusion, the authors present results obtained with both methods on a synthetic case
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尖尖信号的恢复:一种新的最优估计和比较
讨论了被线性系统扭曲和被加性噪声破坏的尖序列的恢复。处理这个问题的一个(现在)经典方法是使用贝叶斯方法和序列的阿伯努利-高斯(BG)先验模型。作者使用伯努利-高斯加高斯(BCG)先验模型对该方法进行了改进。这种估计方法需要后验概率分布的最大化,这是不可能实现最优的。因此,作者提出了一种新的非贝叶斯估计方案,该方案由kullback - leibler信息或交叉熵导出。在Gamboa(1989)和le Besnerais(1995)中,这种相当普遍的方法被称为最大熵均值法(MEMM),它牢牢地建立在凸分析的基础上,并产生了一个唯一的解,可以在实践中有效地计算,并且在这个意义上,它是真正的最优解。作为结论,作者给出了两种方法在一个综合案例上得到的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1