qTask: Task-parallel Quantum Circuit Simulation with Incrementality

Tsung-Wei Huang
{"title":"qTask: Task-parallel Quantum Circuit Simulation with Incrementality","authors":"Tsung-Wei Huang","doi":"10.1109/IPDPS54959.2023.00080","DOIUrl":null,"url":null,"abstract":"Incremental quantum circuit simulation has emerged as an important tool for simulation-driven quantum applications, such as circuit synthesis, verification, and analysis. When a small portion of the circuit is modified, the simulator must incrementally update state amplitudes for reasonable turnaround time and productivity. However, this type of incrementality has been largely ignored by existing research. To fill this gap, we introduce a new incremental quantum circuit simulator called qTask. qTask leverages a task-parallel decomposition strategy to explore both inter- and intra-gate operation parallelisms from partitioned data blocks. Our partitioning strategy effectively narrows down incremental update to a small set of partitions affected by circuit modifiers. We have demonstrated the promising performance of qTask on QASMBench benchmarks. Compared to two state-of-the-art simulators, Qulacs and Qiskit, qTask is respectively 1.46 × and 1.71× faster for full simulation and 5.77× and 9.76× faster for incremental simulation.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental quantum circuit simulation has emerged as an important tool for simulation-driven quantum applications, such as circuit synthesis, verification, and analysis. When a small portion of the circuit is modified, the simulator must incrementally update state amplitudes for reasonable turnaround time and productivity. However, this type of incrementality has been largely ignored by existing research. To fill this gap, we introduce a new incremental quantum circuit simulator called qTask. qTask leverages a task-parallel decomposition strategy to explore both inter- and intra-gate operation parallelisms from partitioned data blocks. Our partitioning strategy effectively narrows down incremental update to a small set of partitions affected by circuit modifiers. We have demonstrated the promising performance of qTask on QASMBench benchmarks. Compared to two state-of-the-art simulators, Qulacs and Qiskit, qTask is respectively 1.46 × and 1.71× faster for full simulation and 5.77× and 9.76× faster for incremental simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增量的任务并行量子电路仿真
增量量子电路仿真已成为仿真驱动量子应用的重要工具,如电路合成、验证和分析。当电路的一小部分被修改时,模拟器必须增量地更新状态振幅,以获得合理的周转时间和生产率。然而,这种类型的增量在很大程度上被现有的研究所忽视。为了填补这一空白,我们引入了一个新的增量量子电路模拟器,称为qTask。qTask利用任务并行分解策略来探索来自分区数据块的门间和门内操作的并行性。我们的分区策略有效地将增量更新缩小到受电路修改器影响的一小部分分区。我们已经在QASMBench基准测试上展示了qTask的良好性能。与Qulacs和Qiskit这两个最先进的模拟器相比,qTask在完全模拟时分别快了1.46倍和1.71倍,在增量模拟时分别快了5.77倍和9.76倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1