MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK

Adedayo Aribisala, Mohammad S. Khan, G. Husari
{"title":"MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK","authors":"Adedayo Aribisala, Mohammad S. Khan, G. Husari","doi":"10.1109/iemcon53756.2021.9623067","DOIUrl":null,"url":null,"abstract":"Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法及其在智能电网网络网络攻击分类中的应用
智能电网架构和软件定义网络(SDN)已经发展成为一种中央控制的基础设施,通过传感器、智能电表和虚拟机实时捕获和提取数据。这些进步带来了风险,并增加了这些基础设施面对复杂网络攻击的脆弱性,如分布式拒绝服务(DDoS)、虚假数据注入攻击(FDIA)和数据重放。将机器学习与网络入侵检测系统(NIDS)相结合,可以提高系统在检测可疑签名和网络异常时的准确性和精密度。在网络流量数据集上使用经过训练和测试的超参数实时分析数据适用于大多数网络基础设施。实现的NSL-KDD数据集包含各种类、攻击类型和协议套件,如TCP、HTTP和POP,这些对智能电网网络上的数据包传输至关重要。在本文中,我们利用了现有的机器学习(ML)算法、支持向量机(SVM)、k近邻(KNN)、随机森林(RF)、Naïve贝叶斯(NB)和Bagging;对所选分类器进行详细的性能比较。为了提高网络滤波的准确度和精度,我们提出了一种将支持向量机与射频相结合的多级混合模型。混合模型SVM-RF在10次交叉验证中平均准确率为94%,在分类过程中80-20%的分割中平均准确率为92.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximization of the User Association of a Low-Power Tier Deploying Biased User Association Scheme in 5G Multi-Tier Heterogeneous Network A Deep Reinforcement Learning: Location-based Resource Allocation for Congested C-V2X Scenario A Deep Learning Approach to Predict Chronic Kidney Disease in Human Evaluation of a bio-socially inspired secure DSA scheme using testbed-calibrated hybrid simulations Siamese Network based Pulse and Signal Attribute Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1