{"title":"Classification System with Capability to Reject Unknowns","authors":"Soma Shiraishi, Katsumi Kikuchi, K. Iwamoto","doi":"10.1109/IST48021.2019.9010169","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for object classification with capability to reject unknown inputs. In the real world application such as an image-recognition-based checkout system, it is crucial to reject unknown inputs while correctly classifying registered objects. Conventional deep-learning-based classification systems with softmax output suffer from overconfident score on unknown objects. We tackled the problem by the following two approaches. First, we incorporated a metric-learning-based method proposed for face verification into object classification. Second, we utilize available unregistered objects (known unknowns) in the training phase by proposing a novel “Margined Unknown Loss”. In the experiment, we showed the effectiveness of the proposed method by confirming that it outperformed conventional softmax-based approaches which also use the known unknowns, on two datasets, MNIST dataset and a retail product dataset, in terms of Recall at a low false positive rate.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we propose a novel method for object classification with capability to reject unknown inputs. In the real world application such as an image-recognition-based checkout system, it is crucial to reject unknown inputs while correctly classifying registered objects. Conventional deep-learning-based classification systems with softmax output suffer from overconfident score on unknown objects. We tackled the problem by the following two approaches. First, we incorporated a metric-learning-based method proposed for face verification into object classification. Second, we utilize available unregistered objects (known unknowns) in the training phase by proposing a novel “Margined Unknown Loss”. In the experiment, we showed the effectiveness of the proposed method by confirming that it outperformed conventional softmax-based approaches which also use the known unknowns, on two datasets, MNIST dataset and a retail product dataset, in terms of Recall at a low false positive rate.