Evaluation of Regression Algorithms and Features on the Energy Disaggregation Task

P. Schirmer, I. Mporas, M. Paraskevas
{"title":"Evaluation of Regression Algorithms and Features on the Energy Disaggregation Task","authors":"P. Schirmer, I. Mporas, M. Paraskevas","doi":"10.1109/IISA.2019.8900695","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量分解任务的回归算法及特征评价
在本文中,我们评估了几个著名的和广泛使用的机器学习算法的回归在能量分解任务。具体来说,我们考虑了非侵入式负载监测方法,并使用7组不同的统计和电气特征在5个数据集上评估了k -近邻、支持向量机、深度神经网络和随机森林算法。实验结果表明,选择合适的特征和回归算法的重要性。随机森林回归算法在能量分解精度方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data Advancing Adult Online Education through a SN-Learning Environment Smart educational games and Consent under the scope of General Data Protection Regulation Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach Data Mining for Smart Cities: Predicting Electricity Consumption by Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1