Adversarial Machine Learning Attack on Modulation Classification

M. Usama, Muhammad Asim, Junaid Qadir, Ala Al-Fuqaha, M. Imran
{"title":"Adversarial Machine Learning Attack on Modulation Classification","authors":"M. Usama, Muhammad Asim, Junaid Qadir, Ala Al-Fuqaha, M. Imran","doi":"10.1109/UCET.2019.8881843","DOIUrl":null,"url":null,"abstract":"Modulation classification is an important component of cognitive self-driving networks. Recently many ML-based modulation classification methods have been proposed. We have evaluated the robustness of 9 ML-based modulation classifiers against the powerful Carlini & Wagner (C-W) attack and showed that the current ML-based modulation classifiers do not provide any deterrence against adversarial ML examples. To the best of our knowledge, we are the first to report the results of the application of the C-W attack for creating adversarial examples against various ML models for modulation classification.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Modulation classification is an important component of cognitive self-driving networks. Recently many ML-based modulation classification methods have been proposed. We have evaluated the robustness of 9 ML-based modulation classifiers against the powerful Carlini & Wagner (C-W) attack and showed that the current ML-based modulation classifiers do not provide any deterrence against adversarial ML examples. To the best of our knowledge, we are the first to report the results of the application of the C-W attack for creating adversarial examples against various ML models for modulation classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调制分类的对抗性机器学习攻击
调制分类是认知自驾车网络的重要组成部分。近年来,人们提出了许多基于机器学习的调制分类方法。我们已经评估了9种基于ML的调制分类器对强大的Carlini & Wagner (C-W)攻击的鲁棒性,并表明当前基于ML的调制分类器对对抗性ML示例没有任何威慑作用。据我们所知,我们是第一个报告C-W攻击的应用结果,用于创建针对各种ML模型的对抗性示例以进行调制分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of a 3D Printed Sensory Ball for Wireless Water Flow Monitoring Intrusion Detection through Leaky Wave Cable in Conjunction with Channel State Information A Miniaturized Wide Band Implantable Antenna for Biomedical Application ECG-based affective computing for difficulty level prediction in Intelligent Tutoring Systems Position Paper: Prototyping Autonomous Vehicles Applications with Heterogeneous Multi-FpgaSystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1