A Multiple Classifier System for Classifying Life Events on Social Media

P. Cavalin, L. G. Moyano, Pedro P. Miranda
{"title":"A Multiple Classifier System for Classifying Life Events on Social Media","authors":"P. Cavalin, L. G. Moyano, Pedro P. Miranda","doi":"10.1109/ICDMW.2015.182","DOIUrl":null,"url":null,"abstract":"In this work we present a Conversation Classifierbased on Multiple Classifiers, to detect Life Events on SocialMedia. In one hand, conversations can provide more contextand help disambiguate life event detection, compared with single posts. On the other hand, the increase in number of messages and the way they interact with each other within the conversation cannot be trivially modeled by a classifier. To tackle this problem, we focus on creating a set of classifiers from different feature sets, and combining their classification outputs to improve accuracy. The experiments show that multiple classifiers are promising for this problem, being able to present an increase of about 45% in the F-Score.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work we present a Conversation Classifierbased on Multiple Classifiers, to detect Life Events on SocialMedia. In one hand, conversations can provide more contextand help disambiguate life event detection, compared with single posts. On the other hand, the increase in number of messages and the way they interact with each other within the conversation cannot be trivially modeled by a classifier. To tackle this problem, we focus on creating a set of classifiers from different feature sets, and combining their classification outputs to improve accuracy. The experiments show that multiple classifiers are promising for this problem, being able to present an increase of about 45% in the F-Score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体生活事件分类的多分类器系统
在这项工作中,我们提出了一个基于多分类器的会话分类器,用于检测社交媒体上的生活事件。一方面,与单个帖子相比,对话可以提供更多的上下文,帮助消除生活事件检测的歧义。另一方面,消息数量的增加以及它们在会话中相互交互的方式不能由分类器简单地建模。为了解决这个问题,我们专注于从不同的特征集创建一组分类器,并结合它们的分类输出来提高准确率。实验表明,对于这个问题,多个分类器是有希望的,能够在F-Score中增加约45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1