Sensitivity of different optimization solvers in LSTM algorithm for temperature forecast over Mars at Jezero Crater landing site

M. Eltahan, Karim Moharm, Nour Daoud
{"title":"Sensitivity of different optimization solvers in LSTM algorithm for temperature forecast over Mars at Jezero Crater landing site","authors":"M. Eltahan, Karim Moharm, Nour Daoud","doi":"10.1109/ACIT50332.2020.9300085","DOIUrl":null,"url":null,"abstract":"Exact forecast of surface temperature over MARS is important and critical. Surface temperature is fundamental to the environmental parameter that has a direct impact on designing and operating the land rovers that explore the MARS planet. In this paper, We used well known long Short-Term Memory (LSTM) algorithm to build a data-driven model to predict the surface temperature over the planned landing site Jezero Crater for Mars 2020 Rover. The data-driven model is built using a dataset based on the Mars Climate Database (MCD) which derived from the Global Climate Model (GCM) simulations for MARS. The temporal availability of this data from martian year 24 to 33. we evaluated the effect of the three different optimization solvers on surface temperature prediction over the landing site Jezero Crater for two different numbers of epochs. The solver that provides the lowest RMSE is used to predict the surface temperature over the landing site from martian year 34 to martian year 36.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Exact forecast of surface temperature over MARS is important and critical. Surface temperature is fundamental to the environmental parameter that has a direct impact on designing and operating the land rovers that explore the MARS planet. In this paper, We used well known long Short-Term Memory (LSTM) algorithm to build a data-driven model to predict the surface temperature over the planned landing site Jezero Crater for Mars 2020 Rover. The data-driven model is built using a dataset based on the Mars Climate Database (MCD) which derived from the Global Climate Model (GCM) simulations for MARS. The temporal availability of this data from martian year 24 to 33. we evaluated the effect of the three different optimization solvers on surface temperature prediction over the landing site Jezero Crater for two different numbers of epochs. The solver that provides the lowest RMSE is used to predict the surface temperature over the landing site from martian year 34 to martian year 36.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM算法中不同优化解对耶泽洛陨石坑着陆点火星温度预报的敏感性
对火星表面温度的精确预报是非常重要和关键的。地表温度是环境参数的基础,它对火星探测器的设计和操作有直接的影响。本文采用长短期记忆(LSTM)算法建立数据驱动模型,预测火星2020火星车计划着陆点Jezero陨石坑表面温度。数据驱动模型是基于火星气候数据库(MCD)的数据集建立的,该数据集来源于全球气候模式(GCM)对火星的模拟。从火星第24年到第33年的数据的时间可用性。我们评估了三种不同的优化解对着陆点Jezero陨石坑两个不同时代数的表面温度预测的影响。提供最低RMSE的求解器用于预测从火星第34年到火星第36年的着陆点表面温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1