Ziyang Shen, Chaoming Fang, Fengshi Tian, Jie Yang, M. Sawan
{"title":"PN-TMS: Pruned Node-fusion Tree-based Multicast Scheme for Efficient Neuromorphic Systems","authors":"Ziyang Shen, Chaoming Fang, Fengshi Tian, Jie Yang, M. Sawan","doi":"10.1109/AICAS57966.2023.10168590","DOIUrl":null,"url":null,"abstract":"A growing demand for low-power and real-time computation is motivating the development of dedicated neuromorphic processors. To maximize scalability and power efficiency, multicore architecture has been broadly applied in existing neuromorphic processors. Nevertheless, mapping a Spiking Neural Network (SNN) on a multicore architecture requires a lot of multicast operations. Conventional routing algorithms like path-based routing and dimension order routing (DOR) lead to a severe overhead in both latency and power. To address these limitations, we propose a novel routing algorithm named Pruned Node-fusion Tree-based Multicast Scheme (PN-TMS). PN-TMS leverages multiple algorithms for route planning, optimizing latency and power simultaneously. Experiment results show that PN-TMS outperforms existing network processors’ routing schemes in terms of both energy consumption and latency, achieves an average energy delay product (EDP) reduction of 38.9%.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A growing demand for low-power and real-time computation is motivating the development of dedicated neuromorphic processors. To maximize scalability and power efficiency, multicore architecture has been broadly applied in existing neuromorphic processors. Nevertheless, mapping a Spiking Neural Network (SNN) on a multicore architecture requires a lot of multicast operations. Conventional routing algorithms like path-based routing and dimension order routing (DOR) lead to a severe overhead in both latency and power. To address these limitations, we propose a novel routing algorithm named Pruned Node-fusion Tree-based Multicast Scheme (PN-TMS). PN-TMS leverages multiple algorithms for route planning, optimizing latency and power simultaneously. Experiment results show that PN-TMS outperforms existing network processors’ routing schemes in terms of both energy consumption and latency, achieves an average energy delay product (EDP) reduction of 38.9%.