A wavelet based algorithm for Ocular Artifact detection In the EEG signals

M. Kiamini, S. Alirezaee, B. Perseh, M. Ahmadi
{"title":"A wavelet based algorithm for Ocular Artifact detection In the EEG signals","authors":"M. Kiamini, S. Alirezaee, B. Perseh, M. Ahmadi","doi":"10.1109/INMIC.2008.4777729","DOIUrl":null,"url":null,"abstract":"Artifacts are noises introduced to an electroencephalogram (EEG) signal by patient's movements. Eye-blinks and movements of the eyeballs produce electrical signals that are collectively known as Ocular Artifacts (OA) and these are 10-100 times stronger than EEG signal which is being recorded. Removing artifacts from EEG signal may aid the work of doctors, because artifacts disturb their attention. This paper present a new method to automatically identify the position of Ocular Artifacts zones in contaminated EEG signal. Then only removing it's to obtain clean EEG based on the stationary wavelet transform (SWT). In this case, correlation coefficient between wavelet coefficients of the Ocular Artifacts zones in contaminated EEG signal and same zones in electrooculogram (EOG) will be used to generate the wavelet coefficients for artifact-free EEG signal.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Artifacts are noises introduced to an electroencephalogram (EEG) signal by patient's movements. Eye-blinks and movements of the eyeballs produce electrical signals that are collectively known as Ocular Artifacts (OA) and these are 10-100 times stronger than EEG signal which is being recorded. Removing artifacts from EEG signal may aid the work of doctors, because artifacts disturb their attention. This paper present a new method to automatically identify the position of Ocular Artifacts zones in contaminated EEG signal. Then only removing it's to obtain clean EEG based on the stationary wavelet transform (SWT). In this case, correlation coefficient between wavelet coefficients of the Ocular Artifacts zones in contaminated EEG signal and same zones in electrooculogram (EOG) will be used to generate the wavelet coefficients for artifact-free EEG signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的脑电信号眼伪影检测算法
伪影是由患者的运动引入到脑电图信号中的噪声。眨眼和眼球运动产生的电信号统称为眼伪影(OA),这些信号比记录的脑电图信号强10-100倍。去除脑电图信号中的伪影可能有助于医生的工作,因为伪影会干扰他们的注意力。提出了一种自动识别受污染脑电信号中眼伪影区位置的新方法。然后基于平稳小波变换(SWT)将其去除,得到干净的脑电信号。在这种情况下,将利用污染脑电信号中眼伪影区域的小波系数与眼电图中相同区域的小波系数之间的相关系数来生成无伪影脑电信号的小波系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1