Smoothing-based estimation of an inspector satellite trajectory relative to a passive object

T. Setterfield, David W. Miller, J. Leonard, A. Saenz-Otero
{"title":"Smoothing-based estimation of an inspector satellite trajectory relative to a passive object","authors":"T. Setterfield, David W. Miller, J. Leonard, A. Saenz-Otero","doi":"10.1109/AERO.2017.7943974","DOIUrl":null,"url":null,"abstract":"This paper presents a method of obtaining the maximum a posteriori estimate of an inspector satellite's trajectory about an unknown tumbling target while on-orbit. An inspector equipped with radar or a 3D visual sensor (such as LiDAR or stereo cameras), an inertial measurement unit, and a star tracker is used to obtain measurements of range and bearing to the target's centroid, angular velocity, acceleration, and orientation in the inertial frame. A smoothing-based trajectory estimation scheme is presented that makes use of all the input sensor data to estimate the inspector's trajectory. Open-source incremental smoothing and mapping (iSAM2) software is used to implement the smoothing-based trajectory estimation algorithm; this facilitates computationally efficient evaluation of the entire trajectory, which can be performed incrementally, and in real time on a computer capable of processing 3D visual sensor data in real time. The presented algorithm was tested on data obtained in 6 degree-of-freedom microgravity using the SPHERES-VERTIGO robotic test platform on the International Space Station (ISS). In these tests, a SPHERES inspector satellite with attached stereo cameras circumnavigated a passive SPHERES target satellite, making visual observations of it. The results of these tests demonstrate accurate estimation of the inspector satellite's trajectory.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a method of obtaining the maximum a posteriori estimate of an inspector satellite's trajectory about an unknown tumbling target while on-orbit. An inspector equipped with radar or a 3D visual sensor (such as LiDAR or stereo cameras), an inertial measurement unit, and a star tracker is used to obtain measurements of range and bearing to the target's centroid, angular velocity, acceleration, and orientation in the inertial frame. A smoothing-based trajectory estimation scheme is presented that makes use of all the input sensor data to estimate the inspector's trajectory. Open-source incremental smoothing and mapping (iSAM2) software is used to implement the smoothing-based trajectory estimation algorithm; this facilitates computationally efficient evaluation of the entire trajectory, which can be performed incrementally, and in real time on a computer capable of processing 3D visual sensor data in real time. The presented algorithm was tested on data obtained in 6 degree-of-freedom microgravity using the SPHERES-VERTIGO robotic test platform on the International Space Station (ISS). In these tests, a SPHERES inspector satellite with attached stereo cameras circumnavigated a passive SPHERES target satellite, making visual observations of it. The results of these tests demonstrate accurate estimation of the inspector satellite's trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相对于被动目标的基于平滑的检测卫星轨迹估计
本文提出了一种获取探测卫星在轨时关于未知翻滚目标轨迹的最大后验估计的方法。探测器配备雷达或3D视觉传感器(如激光雷达或立体摄像机)、惯性测量单元和星跟踪器,用于测量目标在惯性坐标系中的质心、角速度、加速度和方向的距离和方位。提出了一种基于平滑的轨迹估计方案,利用所有输入的传感器数据来估计检查器的轨迹。采用开源的增量平滑与映射(iSAM2)软件实现基于平滑的轨迹估计算法;这有助于在能够实时处理3D视觉传感器数据的计算机上对整个轨迹进行增量和实时的计算效率评估。利用国际空间站的SPHERES-VERTIGO机器人测试平台,对该算法在6自由度微重力环境下获得的数据进行了测试。在这些测试中,一颗带有立体摄像机的SPHERES检查卫星环绕一颗被动SPHERES目标卫星,对其进行视觉观察。这些试验的结果证明了对侦察卫星轨道的准确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1