Shape Priors by Kernel Density Modeling of PCA Residual Structure

J. P. Lewis, Iman Mostafavi, G. Sosinsky, M. Martone, Ruth West
{"title":"Shape Priors by Kernel Density Modeling of PCA Residual Structure","authors":"J. P. Lewis, Iman Mostafavi, G. Sosinsky, M. Martone, Ruth West","doi":"10.1109/ICIP.2007.4380022","DOIUrl":null,"url":null,"abstract":"Modern image processing techniques increasingly use prior models of the expected distribution of objects. Principal component eigen-models are often selected for shape prior modeling, but are limited in capturing only the second order moment statistics. On the other hand, kernel densities can in concept reproduce arbitrary statistics, but are problematic for high dimensional data such as shapes. An evident approach is to combine these methods, using PCA to reduce the problem dimensionality, followed by kernel density modeling of the PCA coefficients. In this paper we show that useful algorithmic and editing operations can be formulated in term of this simple approach. The operations are illustrated in the context of point distribution shape models. Particular points can be rapidly evaluated as being plausible or outliers, and a plausible shape can be completed given limited operator input in a manually guided procedure. This \"PCA+KD\" approach is conceptually simple, scalable (becoming increasingly accurate with additional training data), provides improved modeling power, and supports useful algorithmic queries.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern image processing techniques increasingly use prior models of the expected distribution of objects. Principal component eigen-models are often selected for shape prior modeling, but are limited in capturing only the second order moment statistics. On the other hand, kernel densities can in concept reproduce arbitrary statistics, but are problematic for high dimensional data such as shapes. An evident approach is to combine these methods, using PCA to reduce the problem dimensionality, followed by kernel density modeling of the PCA coefficients. In this paper we show that useful algorithmic and editing operations can be formulated in term of this simple approach. The operations are illustrated in the context of point distribution shape models. Particular points can be rapidly evaluated as being plausible or outliers, and a plausible shape can be completed given limited operator input in a manually guided procedure. This "PCA+KD" approach is conceptually simple, scalable (becoming increasingly accurate with additional training data), provides improved modeling power, and supports useful algorithmic queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA残差结构核密度建模的形状先验
现代图像处理技术越来越多地使用对象预期分布的先验模型。主成分特征模型通常用于形状先验建模,但在捕获二阶矩统计量方面受到限制。另一方面,核密度在概念上可以再现任意统计数据,但对于高维数据(如形状)则存在问题。一种明显的方法是将这些方法结合起来,使用主成分分析来降低问题的维数,然后对主成分分析系数进行核密度建模。在本文中,我们证明了有用的算法和编辑操作可以根据这种简单的方法来制定。在点分布形状模型的背景下说明了这些操作。特定点可以快速评估为可信或异常值,并且在人工引导的过程中,给定有限的操作员输入,可以完成可信的形状。这种“PCA+KD”方法在概念上简单,可扩展(随着额外的训练数据变得越来越准确),提供了改进的建模能力,并支持有用的算法查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1