Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems

Filip Klaesson, Petter Nilsson, A. Ames, R. Murray
{"title":"Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems","authors":"Filip Klaesson, Petter Nilsson, A. Ames, R. Murray","doi":"10.1109/ICCPS48487.2020.00031","DOIUrl":null,"url":null,"abstract":"Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment.","PeriodicalId":158690,"journal":{"name":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS48487.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通信约束下多智能体系统的间歇性连接探索
以机器人团队探索通信受限的地下环境为动力,我们研究了多智能体系统中间歇性连接的规划问题。我们提出了一种新的信息一致性概念来处理所有智能体最初不知道计划的情况,并提出了一个整数线性规划来综合信息一致性计划,并实现辅助目标。此外,受网络流问题的启发,我们提出了一种新的方法来提出连接约束,其可扩展性比以前的方法要好得多。在论文的第二部分,我们将这些结果应用于一个勘探环境,并提出了一种聚类方法,将一个大的勘探问题分离成可以独立解决的小问题。我们演示了最终的探索算法如何能够协调一个由十个代理组成的团队来探索一个大的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantics-Directed Hardware Generation of Hybrid Systems Reputation-Based Fair Power Allocation to Plug-in Electric Vehicles in the Smart Grid WiP Abstract: Detection of False Injection Attacks Based on LTL for Fallback Control A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin Mining Environment Assumptions for Cyber-Physical System Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1