Order statistic filtering with cellular neural networks

Bertram E. Shi
{"title":"Order statistic filtering with cellular neural networks","authors":"Bertram E. Shi","doi":"10.1109/CNNA.1994.381635","DOIUrl":null,"url":null,"abstract":"The paper describes a class of nonlinear CNN template which can implement several different types of filters based upon order statistics (L. Pitas and A.N. Venetsanopoulos, 1990). In particular, median, weighted median, rank order filters (such as max and min filters) and M-filters can be implemented, simply by changing the template parameters.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The paper describes a class of nonlinear CNN template which can implement several different types of filters based upon order statistics (L. Pitas and A.N. Venetsanopoulos, 1990). In particular, median, weighted median, rank order filters (such as max and min filters) and M-filters can be implemented, simply by changing the template parameters.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞神经网络的阶统计滤波
本文描述了一类非线性CNN模板,它可以基于阶统计量实现几种不同类型的滤波器(L. Pitas和A.N. Venetsanopoulos, 1990)。特别是,中值,加权中值,秩顺序过滤器(如max和min过滤器)和m过滤器可以通过简单地更改模板参数来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1