Investigation of Swirl Flows Applied to the Oil and Gas Industry

M. Surendra, G. Falcone, C. Teodoriu
{"title":"Investigation of Swirl Flows Applied to the Oil and Gas Industry","authors":"M. Surendra, G. Falcone, C. Teodoriu","doi":"10.2118/115938-PA","DOIUrl":null,"url":null,"abstract":"The work presented in this paper is part of a larger research project which is aimed at finding solutions to problems associated with liquid loading, erosion at pipe bends caused by sand particles, and phase separation. The work uses computational fluid dynamics (CFD) to design solutions that can reduce or eliminate the aforementioned problems. Here, the results from CFD simulations of two-phase air and water flows are critically analyzed through comparison with the results from experiments carried out by Falcone et al. (2003) using the ANUMET* concept. The entire experimental setup is modeled within the CFD simulation and flow rates for water and air are taken from the data used for the experiments. Important variables such as pressure drop and fluid film thickness, which were monitored closely during the experiments, are obtained from the CFD simulations and compared with the experimental results. The results presented in this paper provide insights into the physics of two-phase swirl flows, identifying areas of research that still need to be addressed.","PeriodicalId":335535,"journal":{"name":"Spe Projects Facilities & Construction","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Projects Facilities & Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/115938-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The work presented in this paper is part of a larger research project which is aimed at finding solutions to problems associated with liquid loading, erosion at pipe bends caused by sand particles, and phase separation. The work uses computational fluid dynamics (CFD) to design solutions that can reduce or eliminate the aforementioned problems. Here, the results from CFD simulations of two-phase air and water flows are critically analyzed through comparison with the results from experiments carried out by Falcone et al. (2003) using the ANUMET* concept. The entire experimental setup is modeled within the CFD simulation and flow rates for water and air are taken from the data used for the experiments. Important variables such as pressure drop and fluid film thickness, which were monitored closely during the experiments, are obtained from the CFD simulations and compared with the experimental results. The results presented in this paper provide insights into the physics of two-phase swirl flows, identifying areas of research that still need to be addressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋流在油气工业中的应用研究
本文中介绍的工作是一个更大的研究项目的一部分,该项目旨在寻找与液体载荷、砂粒引起的管道弯道侵蚀和相分离相关的问题的解决方案。这项工作使用计算流体动力学(CFD)来设计解决方案,可以减少或消除上述问题。这里,通过与Falcone et al.(2003)使用ANUMET*概念进行的实验结果进行比较,对空气和水两相流动的CFD模拟结果进行了严格的分析。整个实验装置在CFD模拟中建模,水和空气的流速取自实验所用的数据。通过CFD模拟得到了实验中密切监测的重要变量,如压降和液膜厚度,并与实验结果进行了比较。本文提出的结果提供了对两相旋流物理的见解,确定了仍然需要解决的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon Sequestration From Waste Through Conversion to Charcoal: Equipment for a Small-Scale Operation A New Proprietary Hybrid-Solvent Process for Improved Mercaptan Removal Development of Simple-To-Use Predictive Tool for Rapid Prediction of n-Alkanes Surface Tension Estimation of Potential Precipitation From an Equilibrated Calcium Carbonate Aqueous Phase Using Simple Predictive Tool Boosting Energy Efficiency Using Waste-Heat-Powered Absorption Chillers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1