Learning-based anomaly detection in BGP updates

Jian Zhang, J. Rexford, J. Feigenbaum
{"title":"Learning-based anomaly detection in BGP updates","authors":"Jian Zhang, J. Rexford, J. Feigenbaum","doi":"10.1145/1080173.1080189","DOIUrl":null,"url":null,"abstract":"Detecting anomalous BGP-route advertisements is crucial for improving the security and robustness of the Internet's interdomain-routing system. In this paper, we propose an instance-learning framework that identifies anomalies based on deviations from the \"normal\" BGP-update dynamics for a given destination prefix and across prefixes. We employ wavelets for a systematic, multi-scaled analysis that avoids the \"magic numbers\" (e.g., for grouping related update messages) needed in previous approaches to BGP-anomaly detection. Our preliminary results show that the update dynamics are generally consistent across prefixes and time. Only a few prefixes differ from the majority, and most prefixes exhibit similar behavior across time. This small set of abnormal prefixes and time intervals may be further examined to determine the source of anomalous behavior. In particular, we observe that many of the unusual prefixes are unstable prefixes that experience frequent routing changes.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1080173.1080189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Detecting anomalous BGP-route advertisements is crucial for improving the security and robustness of the Internet's interdomain-routing system. In this paper, we propose an instance-learning framework that identifies anomalies based on deviations from the "normal" BGP-update dynamics for a given destination prefix and across prefixes. We employ wavelets for a systematic, multi-scaled analysis that avoids the "magic numbers" (e.g., for grouping related update messages) needed in previous approaches to BGP-anomaly detection. Our preliminary results show that the update dynamics are generally consistent across prefixes and time. Only a few prefixes differ from the majority, and most prefixes exhibit similar behavior across time. This small set of abnormal prefixes and time intervals may be further examined to determine the source of anomalous behavior. In particular, we observe that many of the unusual prefixes are unstable prefixes that experience frequent routing changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的BGP更新异常检测
检测异常bgp路由通告对于提高Internet域间路由系统的安全性和鲁棒性至关重要。在本文中,我们提出了一个实例学习框架,该框架基于对给定目的地前缀和跨前缀的“正常”bgp更新动态的偏差来识别异常。我们使用小波进行系统的、多尺度的分析,避免了以前的bp异常检测方法中需要的“幻数”(例如,用于分组相关更新消息)。我们的初步结果表明,更新动态在不同的前缀和时间通常是一致的。只有少数前缀与大多数前缀不同,大多数前缀在不同时间表现出相似的行为。这一小组异常前缀和时间间隔可以进一步检查,以确定异常行为的来源。特别是,我们观察到许多不寻常的前缀都是经历频繁路由更改的不稳定前缀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time monitoring of SIP infrastructure using message classification Authentication anomaly detection: a case study on a virtual private network SIP-based VoIP traffic behavior profiling and its applications Comparison of anomaly signal quality in common detection metrics Identifying and tracking suspicious activities through IP gray space analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1