Real-Time Automatic Wall Detection and Localization based on Side Scan Sonar Images

Martin Aubard, A. Madureira, L. Madureira, José Pinto
{"title":"Real-Time Automatic Wall Detection and Localization based on Side Scan Sonar Images","authors":"Martin Aubard, A. Madureira, L. Madureira, José Pinto","doi":"10.1109/AUV53081.2022.9965813","DOIUrl":null,"url":null,"abstract":"Accurate identification of an uncertain underwater environment is one of the challenges of underwater robotics. Autonomous Underwater Vehicle (AUV) needs to understand its environment accurately to achieve autonomous tasks. The method proposed in this paper is a real-time automatic target recognition based on Side Scan Sonar images to detect and localize a harbor’s wall. This paper explains real-time Side Scan Sonar image generation and compares three Deep Learning object detection algorithms (YOLOv5, YOLOv5-TR, and YOLOX) using transfer learning. The YOLOv5-TR algorithm has the most accurate detection with 99% during training, whereas the YOLOX provides the best accuracy of 91.3% for a recorded survey detection. The YOLOX algorithm realizes the flow chart validation’s real-time detection and target localization.","PeriodicalId":148195,"journal":{"name":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV53081.2022.9965813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate identification of an uncertain underwater environment is one of the challenges of underwater robotics. Autonomous Underwater Vehicle (AUV) needs to understand its environment accurately to achieve autonomous tasks. The method proposed in this paper is a real-time automatic target recognition based on Side Scan Sonar images to detect and localize a harbor’s wall. This paper explains real-time Side Scan Sonar image generation and compares three Deep Learning object detection algorithms (YOLOv5, YOLOv5-TR, and YOLOX) using transfer learning. The YOLOv5-TR algorithm has the most accurate detection with 99% during training, whereas the YOLOX provides the best accuracy of 91.3% for a recorded survey detection. The YOLOX algorithm realizes the flow chart validation’s real-time detection and target localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于侧扫声纳图像的实时自动墙体检测与定位
准确识别不确定的水下环境是水下机器人技术面临的挑战之一。自主水下航行器(AUV)需要准确地了解周围环境,才能完成自主任务。本文提出了一种基于侧扫声纳图像的实时自动目标识别方法,用于港口壁的检测和定位。本文解释了实时侧扫声纳图像的生成,并比较了三种使用迁移学习的深度学习目标检测算法(YOLOv5, YOLOv5- tr和YOLOX)。YOLOv5-TR算法在训练过程中检测准确率最高,达到99%,而YOLOX在记录调查检测中准确率最高,为91.3%。YOLOX算法实现了流程图验证的实时检测和目标定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Situ Damping Parameter Estimation for an Underwater Vehicle Using Onboard Sensors* An Open Source, Low Cost, 3D Printed Thruster For Autonomous Underwater and Surface Vehicles Multi-Robot Visual Control of Autonomous Soft Robotic Fish Power Efficiency Autonomy for Long Duration AUV Operation Experimental Verification of Underwater Glider Maneuvering in Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1