Four languages and lots of macros: analyzing autotools build systems

Jafar M. Al-Kofahi, S. Kothari, Christian Kästner
{"title":"Four languages and lots of macros: analyzing autotools build systems","authors":"Jafar M. Al-Kofahi, S. Kothari, Christian Kästner","doi":"10.1145/3136040.3136051","DOIUrl":null,"url":null,"abstract":"Build systems are crucial for software system development, however there is a lack of tool support to help with their high maintenance overhead. GNU Autotools are widely used in the open source community, but users face various challenges from its hard to comprehend nature and staging of multiple code generation steps, often leading to low quality and error-prone build code. In this paper, we present a platform, AutoHaven, to provide a foundation for developers to create analysis tools to help them understand, maintain, and migrate their GNU Autotools build systems. Internally it uses approximate parsing and symbolic analysis of the build logic. We illustrate the use of the platform with two tools: ACSense helps developers to better understand their build systems and ACSniff detects build smells to improve build code quality. Our evaluation shows that AutoHaven can support most GNU Autotools build systems and can detect build smells in the wild.","PeriodicalId":398999,"journal":{"name":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"655 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136040.3136051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Build systems are crucial for software system development, however there is a lack of tool support to help with their high maintenance overhead. GNU Autotools are widely used in the open source community, but users face various challenges from its hard to comprehend nature and staging of multiple code generation steps, often leading to low quality and error-prone build code. In this paper, we present a platform, AutoHaven, to provide a foundation for developers to create analysis tools to help them understand, maintain, and migrate their GNU Autotools build systems. Internally it uses approximate parsing and symbolic analysis of the build logic. We illustrate the use of the platform with two tools: ACSense helps developers to better understand their build systems and ACSniff detects build smells to improve build code quality. Our evaluation shows that AutoHaven can support most GNU Autotools build systems and can detect build smells in the wild.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四种语言和大量宏:分析自动工具构建系统
构建系统对于软件系统开发是至关重要的,但是缺乏工具支持来帮助处理它们的高维护开销。GNU Autotools在开源社区中被广泛使用,但是用户面临着各种各样的挑战,因为它很难理解多个代码生成步骤的性质和阶段,经常导致低质量和易出错的构建代码。在本文中,我们提出了一个平台AutoHaven,为开发人员创建分析工具提供了一个基础,以帮助他们理解、维护和迁移他们的GNU Autotools构建系统。在内部,它使用构建逻辑的近似解析和符号分析。我们用两个工具来说明这个平台的使用:ACSense帮助开发人员更好地理解他们的构建系统,而ACSniff检测构建气味以提高构建代码质量。我们的评估显示,AutoHaven可以支持大多数GNU Autotools构建系统,并且可以检测到野外的构建气味。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the impact of natural language processing over feature location in models Rewriting a shallow DSL using a GHC compiler extension Avoiding useless mutants Towards compositional and generative tensor optimizations A Haskell compiler for signal transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1