Interactive hierarchical tag clouds for summarizing spatiotemporal social contents

W. Kang, A. Tung, Feng Zhao, Xinyu Li
{"title":"Interactive hierarchical tag clouds for summarizing spatiotemporal social contents","authors":"W. Kang, A. Tung, Feng Zhao, Xinyu Li","doi":"10.1109/ICDE.2014.6816707","DOIUrl":null,"url":null,"abstract":"In recent years, much effort has been invested in analyzing social network data. However, it remains a great challenge to support interactive exploration of such huge amounts of data. In this paper, we propose Vesta, a system that enables visual exploration of social network data via tag clouds. Under Vesta, users can interactively explore and extract summaries of social network contents published in a certain spatial region during a certain period of time. These summaries are represented using a novel concept called hierarchical tag clouds, which allows users to zoom in/out to explore more specific/general tag summaries. In Vesta, the spatiotemporal data is split into partitions. A novel biclustering approach is applied for each partition to extract summaries, which are then used to construct a hierarchical latent Dirichlet allocation model to generate a topic hierarchy. At runtime, the topic hierarchies in the relevant partitions of the user-specified region are merged in a probabilistic manner to form tag hierarchies, which are used to construct interactive hierarchical tag clouds for visualization. The result of an extensive experimental study verifies the efficiency and effectiveness of Vesta.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In recent years, much effort has been invested in analyzing social network data. However, it remains a great challenge to support interactive exploration of such huge amounts of data. In this paper, we propose Vesta, a system that enables visual exploration of social network data via tag clouds. Under Vesta, users can interactively explore and extract summaries of social network contents published in a certain spatial region during a certain period of time. These summaries are represented using a novel concept called hierarchical tag clouds, which allows users to zoom in/out to explore more specific/general tag summaries. In Vesta, the spatiotemporal data is split into partitions. A novel biclustering approach is applied for each partition to extract summaries, which are then used to construct a hierarchical latent Dirichlet allocation model to generate a topic hierarchy. At runtime, the topic hierarchies in the relevant partitions of the user-specified region are merged in a probabilistic manner to form tag hierarchies, which are used to construct interactive hierarchical tag clouds for visualization. The result of an extensive experimental study verifies the efficiency and effectiveness of Vesta.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于总结时空社会内容的交互式分层标签云
近年来,人们在分析社交网络数据方面投入了大量精力。然而,支持对如此庞大的数据进行交互式探索仍然是一个巨大的挑战。在本文中,我们提出了Vesta,一个通过标签云对社交网络数据进行可视化探索的系统。在Vesta下,用户可以对某一空间区域在某一时间段内发布的社交网络内容进行交互式的挖掘和提取摘要。这些摘要使用一种称为分层标记云的新概念来表示,它允许用户放大/缩小以探索更具体/通用的标记摘要。在Vesta中,时空数据被分割成多个分区。采用一种新颖的双聚类方法对每个分区提取摘要,然后将其用于构建分层潜狄利克雷分配模型以生成主题层次结构。在运行时,将用户指定区域的相关分区中的主题层次以概率方式合并形成标签层次,用于构建交互式分层标签云,实现可视化。广泛的实验研究结果验证了Vesta的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing uncertainty in spatial and spatio-temporal data Locality-sensitive operators for parallel main-memory database clusters KnowLife: A knowledge graph for health and life sciences We can learn your #hashtags: Connecting tweets to explicit topics A demonstration of MNTG - A web-based road network traffic generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1