Rock Fracture Extracting on Fractional Differential

Weixing Wang, Juan Wan, Zhao Yang
{"title":"Rock Fracture Extracting on Fractional Differential","authors":"Weixing Wang, Juan Wan, Zhao Yang","doi":"10.1109/IWISA.2010.5473312","DOIUrl":null,"url":null,"abstract":"This paper proposes a rock fracture image segmentation algorithm based on fractional differential theory. By iteratively convoluted with the new covering templates, the high frequency signals on a rock fracture image can be more effectively extracted than the Tiansi module which has been applied in image processing applications. This study is very meaningful for expanding the application areas of fractional differential and carrying out a significant exploration.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a rock fracture image segmentation algorithm based on fractional differential theory. By iteratively convoluted with the new covering templates, the high frequency signals on a rock fracture image can be more effectively extracted than the Tiansi module which has been applied in image processing applications. This study is very meaningful for expanding the application areas of fractional differential and carrying out a significant exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数阶微分的岩石裂隙提取
提出了一种基于分数阶微分理论的岩石裂隙图像分割算法。通过对新的覆盖模板进行迭代卷积,可以比在图像处理中应用的天思模块更有效地提取岩石裂缝图像上的高频信号。本研究对于拓展分数阶微分的应用领域,进行有意义的探索具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Display the Data from Database by ListView on Android An Improved Genetic Algorithm and Its Blending Application with Neural Network A Study for Important Criteria of Feature Selection in Text Categorization A Hierarchical Classification Model Based on Granular Computing A Study of Improving Apriori Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1